Skip to main content
Log in

Sorption of benzene vapors to flexible metal–organic framework [Zn2(bdc)2(dabco)]

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The isotherms of benzene sorption by the metal–organic coordination polymer [Zn2(bdc)2(dabco)] were studied within the temperature range 25–90 °C at pressures up to 75 torr. The maximal benzene content in [Zn2(bdc)2(dabco)] at room temperature was demonstrated to correspond to the composition [Zn2(bdc)2(dabco)]·3.8C6H6. It was established that the process of benzene desorption from the substance under investigation occurs in three stages. (1) Evaporation of benzene from the phase of variable composition (phase C) with compression and distortion of the unit cell (the composition of the phase C varies from [Zn2(bdc)2(dabco)]·3.8C6H6 to [Zn2(bdc)2(dabco)]·3.2C6H6). (2) The transformation of the phase C into phase P. The phase P has the same unit cell geometry as that for the empty framework. The maximal benzene content is [Zn2(bdc)2(dabco)]·1.0C6H6. (3) Benzene evaporation from the phase P of variable composition. We studied the temperature dependences of the equilibrium vapor pressure of benzene for the samples with compositions [Zn2(bdc)2(dabco)]·3.0(3)C6H6 and [Zn2(bdc)2(dabco)]·2.0(3)C6H6 within the temperature range 290–370 K. The thermodynamic parameters of benzene vaporization were determined for the latter compound (\( \Updelta {\text{H}}_{{{\text{av}} .}}^{o} = 49\left( 1 \right) \,{\text{kJ }}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} \); \( \Updelta {\text{S}}_{{{\text{av}} .}}^{^\circ } = 100\left( 3 \right)\, {\text{J}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} {\text{K}}} \right)^{ - 1} \); \( \Updelta {\text{G}}_{298}^{^\circ } = 19.0\left( 2 \right)\, {\text{kJ}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tranchemontagne, D.J., Mendoza-Cortés, J.L., O’Keeffe, M., Yaghi, O.M.: Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009)

    Article  CAS  Google Scholar 

  2. Perry, J.J., Perman, J.A., Zaworotko, M.J.: Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009)

    Article  CAS  Google Scholar 

  3. Janiak, C., Vieth, J.K.: MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010)

    Article  CAS  Google Scholar 

  4. Zhao, D., Timmons, D.J., Yuan, D., Zhou, H.-C.: Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc. Chem. Res. 44, 123–133 (2011)

    Article  CAS  Google Scholar 

  5. Stock, N., Biswas, S.: Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    Article  CAS  Google Scholar 

  6. Farha, O.K., Hupp, J.T.: Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010)

    Article  CAS  Google Scholar 

  7. Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.Ö., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010)

    Article  CAS  Google Scholar 

  8. Morris, R.E., Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2010)

    Article  Google Scholar 

  9. Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  10. Chen, B., Xiang, S., Qian, G.: Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010)

    Article  CAS  Google Scholar 

  11. Murray, L.J., Dincă, M., Long, J.R.: Hydrogen storage in metal–organic framework. Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  CAS  Google Scholar 

  12. Hu, Y.H., Zhang, L.: Hydrogen storage in metal–organic framework. Adv. Mater. 22, E117–E130 (2010)

    Article  CAS  Google Scholar 

  13. Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal–organic framework. Chem. Rev. 112, 782–835 (2012)

    Article  CAS  Google Scholar 

  14. Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R.: Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012)

    Article  CAS  Google Scholar 

  15. Wu, H., Gong, Q., Olson, D.H., Li, J.: Commensurate adsorption of hydrocarbons and alcohols in microporous metal–organic frameworks. Chem. Rev. 112, 836–868 (2012)

    Article  CAS  Google Scholar 

  16. Li, J.R., Sculley, J., Zhou, H.-C.: Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Article  CAS  Google Scholar 

  17. Lee, J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T.: Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  Google Scholar 

  18. Corma, A., García, H., Llabrés i Xamena, F.X.: Engineering metal–organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010)

    Article  CAS  Google Scholar 

  19. Ma, L., Abney, C., Lin, W.: Enantioselective catalysis with homochiral metal–organic framework. Chem. Soc. Rev. 38, 1248–1256 (2009)

    Article  CAS  Google Scholar 

  20. Yoon, M., Srirambalaji, R., Kim, K.: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012)

    Article  CAS  Google Scholar 

  21. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal– organic frameworks materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  Google Scholar 

  22. Park, H.J., Lim, D.-W., Yang, W.S., Oh, T.-R., Suh, M.P.: A Highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251–7260 (2011)

    Article  CAS  Google Scholar 

  23. Coudert, F.-X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C., Fuchs, A.H.: Thermodynamic methods and models to study flexible metal–organic frameworks. ChemPhysChem 12, 247–258 (2011)

    Article  CAS  Google Scholar 

  24. Ghoufi, A., Maurin, G., Ferey, G.: Physics behind the guest-assisted structural transitions of a porous metal–organic framework material. J. Phys. Chem. Lett. 1, 2810–2815 (2010)

    Article  CAS  Google Scholar 

  25. Reichenbach, C., Kalies, G., Lincke, J., Lässig, D., Krautscheid, H., Moellmer, J., Thommes, M.: Unusual adsorption behavior of a highly flexible copper-based MOF. Microporous Mesoporous Mater. 142, 592–600 (2011)

    Article  CAS  Google Scholar 

  26. Uemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K., Kita, H.: Two-step adsorption/desorption on a jungle-gym-type porous coordination polymer. Angew. Chem. Int. Ed. 46, 6662–6665 (2007)

    Article  CAS  Google Scholar 

  27. Llewellyn, P.L., Maurin, G., Devic, T., Loera-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S., Horcajada, P., Filinchuk, Y., Ferey, G.: Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. J. Am. Chem. Soc. 130, 12808–12814 (2008)

    Article  CAS  Google Scholar 

  28. Dybtsev, D.N., Chun, H., Kim, K.: Rigid and flexible: a higly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004)

    Article  CAS  Google Scholar 

  29. Chun, H., Dybtsev, D.N., Kim, H., Kim, K.: Synthesis, X-ray structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005)

    Article  CAS  Google Scholar 

  30. Kim, H., Samsonenko, D.G., Das, S., Kim, G.-H., Lee, H.-S., Dybtsev, D.N., Berdonosova, E.A., Kim, K.: Methane sorption and structural characterization of the sorption sites in Zn2(bdc)2(dabco) by single crystal X-ray crystallography. Chem. Asian J. 4, 886–891 (2009)

    Article  CAS  Google Scholar 

  31. Lee, J.Y., Olson, D.H., Pan, L., Emge, T.J., Li, J.: Microporous metal–organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 17, 1255–1262 (2007)

    Article  CAS  Google Scholar 

  32. Ukraintseva, E.A., Dyadin, YuA, Kislykh, N.V., Logvinenko, V.A., Soldatov, D.V.: Vapour pressure of 4-methylpyridine (MePy) over [Ni(MePy)4(NCS)2]·y(MePy) and [Cu(MePy)4(NCS)2]·2/3(MePy) clathrates during their dissociation. J. Incl. Phenom. Mol. Recognit. Chem. 23, 23–33 (1995)

    Article  CAS  Google Scholar 

  33. Ukraintseva, E.A., Soldatov, D.V., Dyadin, Y.A.: Thermodynamic stability of the [M(Pyridine)4X2]·2G clathrates as a function of the host components (M, X) and included guest (G). J. Incl. Phenom. Macrocycl. Chem. 48, 19–23 (2004)

    Article  CAS  Google Scholar 

  34. Ukraintseva, E.A., Soldatov, D.V.: Vapour pressure of guest and thermodynamic stability of inclusion compounds [Ni(DBM)2Py2]·2G (DBM = dibenzoylmethanate anion, G = pyridine, tetrahydrofurane and chloroform). J. Incl. Phenom. Macrocycl. Chem. 66, 219–222 (2010)

    Article  CAS  Google Scholar 

  35. Ukraintseva, E.A., Chekhova, G.V., Pinakov, D.V.: Thermodynamic characteristics of thermal dissociation of inclusion compounds based on graphite fluorides. J. Therm. Anal. Calorim. 105, 287–292 (2011)

    Article  CAS  Google Scholar 

  36. Ukraintseva, E.A., Logvinenko, V.A., Soldatov, D.V., Chingina, T.A.: Thermal dissociation processes for clathrates [CuPy4(NO3)2]·2G (G = tetrahydrofurane, chloroform). J. Therm. Anal. Calorim. 75, 337–345 (2004)

    Article  CAS  Google Scholar 

  37. Rodriguez-Carvajal J.: FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, p. 127. Toulouse, France (1990)

  38. Rupp, B.: XLAT—a microcomputer program for the refinement of cell constants. Scr. Metall. 22, 1 (1988)

    Article  Google Scholar 

  39. Zefirov, YuV, Zorky, P.M.: New applications of van der Waals radii in chemistry. Russ. Chem. Rev. 64(5), 446–460 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. Grachev for calculation of the channel diameter in phase P. The work was supported by the Russian Foundation for Basic Research (grant no. 11-03-00112) and the Russian Academy of Science (program of the Division of Chemistry and Materials Science no. 5.6.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis G. Samsonenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukraintseva, E.A., Manakov, A.Y., Samsonenko, D.G. et al. Sorption of benzene vapors to flexible metal–organic framework [Zn2(bdc)2(dabco)]. J Incl Phenom Macrocycl Chem 77, 205–211 (2013). https://doi.org/10.1007/s10847-012-0234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0234-5

Keywords

Navigation