Sorption of benzene vapors to flexible metal–organic framework [Zn2(bdc)2(dabco)]

  • Elissa A. Ukraintseva
  • Andrey Yu. Manakov
  • Denis G. SamsonenkoEmail author
  • Sergey A. Sapchenko
  • Evgeny Yu. Semitut
  • Vladimir P. Fedin
Original Article


The isotherms of benzene sorption by the metal–organic coordination polymer [Zn2(bdc)2(dabco)] were studied within the temperature range 25–90 °C at pressures up to 75 torr. The maximal benzene content in [Zn2(bdc)2(dabco)] at room temperature was demonstrated to correspond to the composition [Zn2(bdc)2(dabco)]·3.8C6H6. It was established that the process of benzene desorption from the substance under investigation occurs in three stages. (1) Evaporation of benzene from the phase of variable composition (phase C) with compression and distortion of the unit cell (the composition of the phase C varies from [Zn2(bdc)2(dabco)]·3.8C6H6 to [Zn2(bdc)2(dabco)]·3.2C6H6). (2) The transformation of the phase C into phase P. The phase P has the same unit cell geometry as that for the empty framework. The maximal benzene content is [Zn2(bdc)2(dabco)]·1.0C6H6. (3) Benzene evaporation from the phase P of variable composition. We studied the temperature dependences of the equilibrium vapor pressure of benzene for the samples with compositions [Zn2(bdc)2(dabco)]·3.0(3)C6H6 and [Zn2(bdc)2(dabco)]·2.0(3)C6H6 within the temperature range 290–370 K. The thermodynamic parameters of benzene vaporization were determined for the latter compound (\( \Updelta {\text{H}}_{{{\text{av}} .}}^{o} = 49\left( 1 \right) \,{\text{kJ }}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} \); \( \Updelta {\text{S}}_{{{\text{av}} .}}^{^\circ } = 100\left( 3 \right)\, {\text{J}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} {\text{K}}} \right)^{ - 1} \); \( \Updelta {\text{G}}_{298}^{^\circ } = 19.0\left( 2 \right)\, {\text{kJ}}\left( {{\text{moleC}}_{6} {\text{H}}_{6} } \right)^{ - 1} \)).


Metal–organic frameworks Benzene Sorption Zinc 



We thank Dr. E. Grachev for calculation of the channel diameter in phase P. The work was supported by the Russian Foundation for Basic Research (grant no. 11-03-00112) and the Russian Academy of Science (program of the Division of Chemistry and Materials Science no. 5.6.1).

Supplementary material

10847_2012_234_MOESM1_ESM.pdf (395 kb)
Supplementary material 1 (PDF 395 kb)


  1. 1.
    Tranchemontagne, D.J., Mendoza-Cortés, J.L., O’Keeffe, M., Yaghi, O.M.: Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009)CrossRefGoogle Scholar
  2. 2.
    Perry, J.J., Perman, J.A., Zaworotko, M.J.: Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009)CrossRefGoogle Scholar
  3. 3.
    Janiak, C., Vieth, J.K.: MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010)CrossRefGoogle Scholar
  4. 4.
    Zhao, D., Timmons, D.J., Yuan, D., Zhou, H.-C.: Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc. Chem. Res. 44, 123–133 (2011)CrossRefGoogle Scholar
  5. 5.
    Stock, N., Biswas, S.: Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRefGoogle Scholar
  6. 6.
    Farha, O.K., Hupp, J.T.: Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010)CrossRefGoogle Scholar
  7. 7.
    Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.Ö., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010)CrossRefGoogle Scholar
  8. 8.
    Morris, R.E., Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2010)CrossRefGoogle Scholar
  9. 9.
    Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, B., Xiang, S., Qian, G.: Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010)CrossRefGoogle Scholar
  11. 11.
    Murray, L.J., Dincă, M., Long, J.R.: Hydrogen storage in metal–organic framework. Chem. Soc. Rev. 38, 1294–1314 (2009)CrossRefGoogle Scholar
  12. 12.
    Hu, Y.H., Zhang, L.: Hydrogen storage in metal–organic framework. Adv. Mater. 22, E117–E130 (2010)CrossRefGoogle Scholar
  13. 13.
    Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal–organic framework. Chem. Rev. 112, 782–835 (2012)CrossRefGoogle Scholar
  14. 14.
    Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R.: Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012)CrossRefGoogle Scholar
  15. 15.
    Wu, H., Gong, Q., Olson, D.H., Li, J.: Commensurate adsorption of hydrocarbons and alcohols in microporous metal–organic frameworks. Chem. Rev. 112, 836–868 (2012)CrossRefGoogle Scholar
  16. 16.
    Li, J.R., Sculley, J., Zhou, H.-C.: Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)CrossRefGoogle Scholar
  17. 17.
    Lee, J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T.: Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)CrossRefGoogle Scholar
  18. 18.
    Corma, A., García, H., Llabrés i Xamena, F.X.: Engineering metal–organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010)CrossRefGoogle Scholar
  19. 19.
    Ma, L., Abney, C., Lin, W.: Enantioselective catalysis with homochiral metal–organic framework. Chem. Soc. Rev. 38, 1248–1256 (2009)CrossRefGoogle Scholar
  20. 20.
    Yoon, M., Srirambalaji, R., Kim, K.: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012)CrossRefGoogle Scholar
  21. 21.
    Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal– organic frameworks materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)CrossRefGoogle Scholar
  22. 22.
    Park, H.J., Lim, D.-W., Yang, W.S., Oh, T.-R., Suh, M.P.: A Highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251–7260 (2011)CrossRefGoogle Scholar
  23. 23.
    Coudert, F.-X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C., Fuchs, A.H.: Thermodynamic methods and models to study flexible metal–organic frameworks. ChemPhysChem 12, 247–258 (2011)CrossRefGoogle Scholar
  24. 24.
    Ghoufi, A., Maurin, G., Ferey, G.: Physics behind the guest-assisted structural transitions of a porous metal–organic framework material. J. Phys. Chem. Lett. 1, 2810–2815 (2010)CrossRefGoogle Scholar
  25. 25.
    Reichenbach, C., Kalies, G., Lincke, J., Lässig, D., Krautscheid, H., Moellmer, J., Thommes, M.: Unusual adsorption behavior of a highly flexible copper-based MOF. Microporous Mesoporous Mater. 142, 592–600 (2011)CrossRefGoogle Scholar
  26. 26.
    Uemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K., Kita, H.: Two-step adsorption/desorption on a jungle-gym-type porous coordination polymer. Angew. Chem. Int. Ed. 46, 6662–6665 (2007)CrossRefGoogle Scholar
  27. 27.
    Llewellyn, P.L., Maurin, G., Devic, T., Loera-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S., Horcajada, P., Filinchuk, Y., Ferey, G.: Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. J. Am. Chem. Soc. 130, 12808–12814 (2008)CrossRefGoogle Scholar
  28. 28.
    Dybtsev, D.N., Chun, H., Kim, K.: Rigid and flexible: a higly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004)CrossRefGoogle Scholar
  29. 29.
    Chun, H., Dybtsev, D.N., Kim, H., Kim, K.: Synthesis, X-ray structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005)CrossRefGoogle Scholar
  30. 30.
    Kim, H., Samsonenko, D.G., Das, S., Kim, G.-H., Lee, H.-S., Dybtsev, D.N., Berdonosova, E.A., Kim, K.: Methane sorption and structural characterization of the sorption sites in Zn2(bdc)2(dabco) by single crystal X-ray crystallography. Chem. Asian J. 4, 886–891 (2009)CrossRefGoogle Scholar
  31. 31.
    Lee, J.Y., Olson, D.H., Pan, L., Emge, T.J., Li, J.: Microporous metal–organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 17, 1255–1262 (2007)CrossRefGoogle Scholar
  32. 32.
    Ukraintseva, E.A., Dyadin, YuA, Kislykh, N.V., Logvinenko, V.A., Soldatov, D.V.: Vapour pressure of 4-methylpyridine (MePy) over [Ni(MePy)4(NCS)2]·y(MePy) and [Cu(MePy)4(NCS)2]·2/3(MePy) clathrates during their dissociation. J. Incl. Phenom. Mol. Recognit. Chem. 23, 23–33 (1995)CrossRefGoogle Scholar
  33. 33.
    Ukraintseva, E.A., Soldatov, D.V., Dyadin, Y.A.: Thermodynamic stability of the [M(Pyridine)4X2]·2G clathrates as a function of the host components (M, X) and included guest (G). J. Incl. Phenom. Macrocycl. Chem. 48, 19–23 (2004)CrossRefGoogle Scholar
  34. 34.
    Ukraintseva, E.A., Soldatov, D.V.: Vapour pressure of guest and thermodynamic stability of inclusion compounds [Ni(DBM)2Py2]·2G (DBM = dibenzoylmethanate anion, G = pyridine, tetrahydrofurane and chloroform). J. Incl. Phenom. Macrocycl. Chem. 66, 219–222 (2010)CrossRefGoogle Scholar
  35. 35.
    Ukraintseva, E.A., Chekhova, G.V., Pinakov, D.V.: Thermodynamic characteristics of thermal dissociation of inclusion compounds based on graphite fluorides. J. Therm. Anal. Calorim. 105, 287–292 (2011)CrossRefGoogle Scholar
  36. 36.
    Ukraintseva, E.A., Logvinenko, V.A., Soldatov, D.V., Chingina, T.A.: Thermal dissociation processes for clathrates [CuPy4(NO3)2]·2G (G = tetrahydrofurane, chloroform). J. Therm. Anal. Calorim. 75, 337–345 (2004)CrossRefGoogle Scholar
  37. 37.
    Rodriguez-Carvajal J.: FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, p. 127. Toulouse, France (1990)Google Scholar
  38. 38.
    Rupp, B.: XLAT—a microcomputer program for the refinement of cell constants. Scr. Metall. 22, 1 (1988)CrossRefGoogle Scholar
  39. 39.
    Zefirov, YuV, Zorky, P.M.: New applications of van der Waals radii in chemistry. Russ. Chem. Rev. 64(5), 446–460 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Elissa A. Ukraintseva
    • 1
  • Andrey Yu. Manakov
    • 1
    • 2
  • Denis G. Samsonenko
    • 1
    • 2
    Email author
  • Sergey A. Sapchenko
    • 1
  • Evgeny Yu. Semitut
    • 1
  • Vladimir P. Fedin
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations