Application of nano-baskets in metabolomics

  • Bahram Mokhtari
  • Kobra PourabdollahEmail author
Original Article


A novel approach for inclusion extraction and fingerprinting of metabolite was introduced base upon the emulsion liquid membrane-nuclear magnetic resonance (ELM-NMR) technique. The objective of this method is optimizing the fingerprints, minimizing the metabolic variation from analysis, increasing the likelihood differences, and obtaining the maximum extraction yield. Low molecular weight metabolites in rat serum were recovered by ELMs using three nano-baskets of calix[4]crowns-3 as emulsifier and carrier. The yields of ELMs were optimized by the method of once at a time. According to the NMR data, the maximum metabolic variation was achieved using scaffold 4 (4 wt%), n-decane membrane, stirring rate of 300 rpm, treat and phase ratios of 0.3 and 0.8, respectively. According to the NMR data, the results revealed that calixcrowns 6 and 9 tend to extract non-specific macromolecules and the repeatability of fingerprints for 4-mediated ELM was more than two others. The yield of extractions was obtained to be higher for n-decane and lower for carbon tetrachloride. Using different membrane types, the fingerprints by chlorinated liquid membranes were more repeatable than toluene or n-decane.


Nano-baskets Metabolomics Inclusion Calix[4]crown-3 Emulsion liquid membranes 



This work was supported by Shahreza branch, Islamic Azad University and Iran Nanotechnology Initiative Council.


  1. 1.
    Villas-Boas, S.G., Bruheim, P.: Cold glycerol-saline: The promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal. Biochem. 370, 87–97 (2007)CrossRefGoogle Scholar
  2. 2.
    Hajjaj, H., Blanc, P.J., Goma, G., Francois, J.: Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol. Lett. 164, 195–200 (1998)CrossRefGoogle Scholar
  3. 3.
    de Koning, W., Vandam, K.: A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral Ph. Anal. Biochem. 204, 118–123 (1992)CrossRefGoogle Scholar
  4. 4.
    Hans, M.A., Heinzle, E., Wittmann, C.: Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 56, 776–779 (2001)CrossRefGoogle Scholar
  5. 5.
    Wittmann, C., Kromer, J.O., Kiefer, P., Binz, T., Heinzle, E.: Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem. 327, 135–139 (2004)CrossRefGoogle Scholar
  6. 6.
    Castrillo, J.I., Hayes, A., Mohammed, S., Gaskell, S.J., Oliver, S.G.: An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62, 929–937 (2003)CrossRefGoogle Scholar
  7. 7.
    Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., Nielsen, J.: Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast 22, 1155–1169 (2005)CrossRefGoogle Scholar
  8. 8.
    Schaub, J., Schiesling, C., Reuss, M., Dauner, M.: Integrated sampling procedure for metabolome analysis. Biotechnol. Prog. 22, 1434–1442 (2006)CrossRefGoogle Scholar
  9. 9.
    Oldiges, M., Takors, R.: Applying metabolic profiling techniques for stimulus-response experiments: Chances and pitfalls. Technol. Transfer Biotechnol. 92, 173–196 (2005)CrossRefGoogle Scholar
  10. 10.
    Loret, M.O., Pedersen, L., Francois, J.: Revised procedures for yeast metabolites extraction: Application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast 24, 47–60 (2007)CrossRefGoogle Scholar
  11. 11.
    Lin, C.Y., Wu, H., Tjeerdema, R.S., Viant, M.R.: Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3(1), 55–67 (2007)CrossRefGoogle Scholar
  12. 12.
    Mashego, M.R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., Heijnen, J.J.: Microbial metabolomics: Past, present and future methodologies. Biotechnol. Lett. 29, 1–16 (2007)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, B., Francois, J., Renaud, M.: A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347–1355 (1997)CrossRefGoogle Scholar
  14. 14.
    Maharjan, R.P., Ferenci, T.: Global metabolite analysis: The influence of extraction methodology on metabolome profiles of Escherichia coli. Anal. Biochem. 313, 145–154 (2003)CrossRefGoogle Scholar
  15. 15.
    Wollenberger, A., Ristau, O., Schoffa, G.: Eine Einfache Technik der Extrem Schnellen Abkuhlung Grosserer Gewebestucke. Pflugers Archiv fur die Gesamte Physiologie des Menschen und der Tiere 270, 399–412 (1960)CrossRefGoogle Scholar
  16. 16.
    Williams, D.H., Lund, P., Krebs, H.A.: Redox state of free nicotinamide-adenine dinucleotide in cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967)Google Scholar
  17. 17.
    Veech, R.L., Egglesto, L.V., Krebs, H.A.: Redox state of free nicotinamide-adenine dinucleotide phosphate in cytoplasm of rat liver. Biochem. J. 115, 609–619 (1969)Google Scholar
  18. 18.
    Faupel, R.P., Seitz, H.J., Tarnowsk, W., Thiemann, V., Weiss, C.: Problem of tissue sampling from experimental-animals with respect to freezing technique, anoxia, stress and narcosis— New method for sampling rat-liver tissue and physiological values of glycolytic intermediates and related compounds. Arch. Biochem. Biophys. 148, 509–522 (1972)CrossRefGoogle Scholar
  19. 19.
    Harrison, D.E., Maitra, P.K.: Control of respiration and metabolism in growing klebsiella aerogenes—Role of adenine nucleotides. Biochem. J. 112, 647–656 (1969)Google Scholar
  20. 20.
    Cole, H.A., Wimpenny, J.W., Hughes, D.E.: ATP pool in Escherichia Coli. I. Measurement of pool using a modified luciferase assay. Biochim. Biophys. Acta 143, 445–453 (1967)CrossRefGoogle Scholar
  21. 21.
    Weibel, K.E., Mor, J.R., Fiechter, A.: Rapid sampling of yeast-cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal. Biochem. 58, 208–216 (1974)CrossRefGoogle Scholar
  22. 22.
    Ruijter, G.J.G., Visser, J.: Determination of intermediary metabolites in Aspergillus niger. J. Microbiol. Meth. 25, 295–302 (1996)CrossRefGoogle Scholar
  23. 23.
    Moritz, B., Striegel, K., de Graaf, A.A., Sahm, H.: Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267, 3442–3452 (2000)CrossRefGoogle Scholar
  24. 24.
    Bolten, C.J., Kiefer, P., Letisse, F., Portais, J.C., Wittmann, C.: Sampling for metabolome analysis of microorganisms. Anal. Chem. 79, 3843–3849 (2007)CrossRefGoogle Scholar
  25. 25.
    Li, N.N.: Separating hydrocarbons with liquid membranes, US Patent 3410794, 1968Google Scholar
  26. 26.
    Kumbasar, R.A., Sahin, I.: Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5,7-dibromo-8-hydroxyquinoline (DBHQ). J. Membr. Sci. 164, 712–718 (2008)CrossRefGoogle Scholar
  27. 27.
    Chakraborty, M., Bhattacharya, C., Datta, S.: Effect of drop size distribution on mass transfer analysis of the extraction of nickel(II) by emulsion liquid membrane. Colloids Surf. A 224, 65–74 (2003)CrossRefGoogle Scholar
  28. 28.
    San Román, O.M.F., Corvalán, S.M., Eliceche, A.M.: Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI). Ind. Eng. Chem. Res. 42, 5891–5899 (2003)CrossRefGoogle Scholar
  29. 29.
    Correia, P.F., de Carvalho, J.M.R.: Recovery of phenol from phenolic resin plant effluents by emulsion liquid membranes. J. Membr. Sci. 225, 41–49 (2003)CrossRefGoogle Scholar
  30. 30.
    Park, Y., Skelland, A.H.P., Forney, L.J., Kim, J.H.: Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. Water Res. 40, 1763–1772 (2006)CrossRefGoogle Scholar
  31. 31.
    Frankenfeld, J.W., Chan, R.P., Li, N.N.: Extraction of copper by liquid membranes. Sep. Sci. Technol. 16, 385–402 (1981)CrossRefGoogle Scholar
  32. 32.
    Ikeda, H., Matsuhisa, A., Ueno, A.: Efficient transport of Saccharides through a liquid membrane mediated by a cyclodextrin dimer. Chem. Eur. J. 9, 4907–4910 (2003)CrossRefGoogle Scholar
  33. 33.
    Yordanov, B., Boyadzhiev, L.: Pertraction of citric acid by means of emulsion liquid membranes. J. Membr. Sci. 305, 313–324 (2007)CrossRefGoogle Scholar
  34. 34.
    Cotton, D.J.C., Lometto, A.L., Harkins, K.R., Hinz, P.N.: Resistance of Lactobacillus casei in plastic-composite-support biofilm reactors during liquid membrane extraction and optimization of the lactic acid extraction system. Biotechnol. Bioeng. 83, 749–759 (2003)CrossRefGoogle Scholar
  35. 35.
    Kaghazchia, T., Kargaria, A., Yegania, R., Zare, A.: Emulsion liquid membrane pertraction of l-lysine from dilute aqueous solutions by D2EHPA mobile carrier. Desalination 190, 161–171 (2006)CrossRefGoogle Scholar
  36. 36.
    Mohagheghi, E., Alemzadeh, I., Vossoughi, M.: Study and optimization of amino acid extraction by emulsion liquid membrane. Sep. Sci. Technol. 43, 3075–3096 (2008)CrossRefGoogle Scholar
  37. 37.
    Oshima, T., Inoue, K., Furusaki, S., Goto, M.: Liquid membrane transport of amino acids by a Calix[6]arene carboxylic acid derivative. J. Membr. Sci. 217, 87–187 (2003)CrossRefGoogle Scholar
  38. 38.
    Bayraktar, E.: Response surface optimization of the separation of dl-tryptophan using an emulsion liquid membrane. Process Biochem. 37, 169–175 (2001)CrossRefGoogle Scholar
  39. 39.
    Vasudevan, M., Wiencek, J.M.: Mechanism of the extraction of proteins into Tween 85 nonionic microemulsions. Ind. Eng. Chem. Res. 35, 1085–1089 (1996)CrossRefGoogle Scholar
  40. 40.
    Habaki, H., Egashira, R., Stevens, G.W., Kawasaki, J.: A novel method improving low separation performance for W/O/W ELM permeation of erythromycin. J. Membr. Sci. 208, 89–103 (2002)CrossRefGoogle Scholar
  41. 41.
    Lee, S.C.: Development of a more efficient emulsion liquid membrane system with a dilute polymer solution for extraction of penicillin G. J. Ind. Eng. Chem. 14, 207–212 (2008)CrossRefGoogle Scholar
  42. 42.
    Hou, W., Papadopoulos, K.D.: Stability of water-in-oil-in-water type globules. Chem. Eng. Sci. 51, 5043–5051 (1996)CrossRefGoogle Scholar
  43. 43.
    Zihao, W., Yuanli, J., Jufu, F.: The entrainment swelling of emulsion during lactic acid extraction by LSMs. J. Membr. Sci. 109, 25–34 (1996)CrossRefGoogle Scholar
  44. 44.
    Bandyopadhyaya, R., Bhowal, A., Datta, S., Sanyal, S.K.: A new model of batch extraction in emulsion liquid membrane: simulation of globule–globule interaction and leakage. Chem. Eng. Sci. 53, 2799–2807 (1998)CrossRefGoogle Scholar
  45. 45.
    Xuan-cai, D., Fu-quan, X.: Study of the swelling phenomena of liquid surfactant membranes. J. Membr. Sci. 59, 183–188 (1991)CrossRefGoogle Scholar
  46. 46.
    Li, N.N., Borwankar, R.P., Chan, C.C., Wassan, D.T., Kurzeja, R.M., Gu, Z.M.: Analysis of the effect of internal phase leakage on liquid membrane separations. AIChE J. 34, 753–762 (1988)CrossRefGoogle Scholar
  47. 47.
    Florence, A.T., Whitehill, D.: Some features of breakdown in water-in-oil-in water multiple emulsions. J. Colloid Interface Sci. 79, 243–256 (1981)CrossRefGoogle Scholar
  48. 48.
    Wan, Y., Zhang, X.: Swelling determination of W/O/W emulsion liquid membranes. J. Membr. Sci. 196, 185–201 (2002)CrossRefGoogle Scholar
  49. 49.
    Mokhtari, B., Pourabdollah, K.: Effect of crown size and upper moieties in nano-baskets of diacid calix[4]arene-1,2-crowns-3,4,5,6 on the extraction of s-block metals. J. Coord. Chem. 64, 3081–3091 (2011)CrossRefGoogle Scholar
  50. 50.
    Mokhtari, B., Pourabdollah, K.: Solvent extraction of low molecular weight metabolites by di-ionizable nano-baskets. J. Coord. Chem. 64, 4029–4053 (2011)CrossRefGoogle Scholar
  51. 51.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Applications of nano-baskets of calixarenes in chromatography. Chromatographia 73, 829–847 (2011)CrossRefGoogle Scholar
  52. 52.
    Mokhtari, B., Pourabdollah, K.: Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid–liquid microextraction and nano-baskets of calixarene. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 183–189 (2012)Google Scholar
  53. 53.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem. 69, 1–55 (2011)CrossRefGoogle Scholar
  54. 54.
    Baeyer, A.: Ueber die verbindungen der aldehyde mit den phenolen. Chem. Ber. 5, 280–282 (1872)CrossRefGoogle Scholar
  55. 55.
    Zinke, A., Ziegler, E.: Zur kenntnis des härtungsprozesses von phenol-formaldehyd-harzen, X. mitteilung. Chem. Ber. 77, 264–272 (1944)Google Scholar
  56. 56.
    Gutsche, C.D., Muthukrishnan, R.: Calixarenes. Analysis of the product mixtures by the bas-catalyzed condensation of formaldehyde with para-substituted phenols. J. Org. Chem. 43, 4905–4936 (1978)CrossRefGoogle Scholar
  57. 57.
    Mokhtari, B., Pourabdollah, K.: Structure optimization of di-ionizable calixarene nano-baskets for competitive solvent extraction of alkali and alkaline earth metals. Bull. Korean Chem. Soc. 32, 3855–3860 (2011)CrossRefGoogle Scholar
  58. 58.
    Mokhtari, B., Pourabdollah, K.: Competitive solvent extraction of alkaline earth metals by ionizable nano-baskets of calixarene. Supramol. Chem. 23, 696–702 (2011)CrossRefGoogle Scholar
  59. 59.
    Mokhtari, B., Pourabdollah, K.: Binding mechanisms of nano-baskets towards low molecular weight metabolites. Isothermal titration calorimetric study. J. Therm. Anal. Calorim. (2012). doi: 10.1007/s10973-011-2014-7
  60. 60.
    Mokhtari, B., Pourabdollah, K.: Investigation of ionizable nano-baskets of calix[4]-1,2-crown-3 by differential pulse voltammetry. J. Coord. Chem. 64, 4079–4087 (2011)CrossRefGoogle Scholar
  61. 61.
    Mokhtari, B., Pourabdollah, K.: Binding and extraction of alkali and alkaline earth metals by nano-baskets of calix[4]arene-1,2-crown-3 conformers. J. Incl. Phenom. Macrocycl. Chem. 73 (1–4), 269–277 (2012)CrossRefGoogle Scholar
  62. 62.
    Mokhtari, B., Pourabdollah, K.: Effect of crown ring size and upper moiety on the extraction of s-block metals by ionizable calixcrown nano-baskets. Bull. Korean Chem. Soc. 32, 3979–3990 (2011)CrossRefGoogle Scholar
  63. 63.
    Mokhtari, B., Pourabdollah, K., Dallali, N.: A review of calixarene applications in nuclear industries. J. Radioanal. Nucl. Chem. 287, 921–934 (2011)CrossRefGoogle Scholar
  64. 64.
    Mokhtari, B., Pourabdollah, K.: Binding abilities and extractive applications of nano-baskets of calixarene. Asian J. Chem. 23, 4717–4734 (2011)Google Scholar
  65. 65.
    Mokhtari, B., Pourabdollah, K.: Medical applications of nano-baskets. J. Coord. Chem. 64, 3189–3204 (2011)CrossRefGoogle Scholar
  66. 66.
    Mokhtari, B., Pourabdollah, K.: Applications of calixarene nano-baskets in pharmacology. J. Incl. Phenom. Macrocycl. Chem. 73, 1–15 (2012)CrossRefGoogle Scholar
  67. 67.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Molecule and ion recognition of nano-baskets of calixarenes since 2005. J. Coord. Chem. 64, 743–794 (2011)CrossRefGoogle Scholar
  68. 68.
    Mokhtari, B., Pourabdollah, K.: Binding study of ionizable calix[4]-1,3-crowns-5,6 nano-baskets by differential pulse voltammetry. J. Electrochem. Soc. 159, K61–K65 (2012)CrossRefGoogle Scholar
  69. 69.
    Mokhtari, B., Pourabdollah, K.: Binding survey of ionizable calix[4]-1,2-crown-3 nano-baskets by differential pulse voltammetry. Electroanalysis 24, 219–223 (2012)CrossRefGoogle Scholar
  70. 70.
    Mokhtari, B., Pourabdollah, K.: Voltammetric study of nano-baskets of calix[4]-1,3-crowns-5, -crowns-6 complexes. Electrochim. Acta 76, 363–367 (2012)CrossRefGoogle Scholar
  71. 71.
    Mokhtari, B., Pourabdollah, K.: Extraction of s-block metals by nano-baskets of calix[4]crown-3. Can. J. Chem. 90, 560–566 (2012)CrossRefGoogle Scholar
  72. 72.
    Mokhtari, B., Pourabdollah, K.: Dispersive enhancement in liquid–liquid microextraction by dual supramolecular role of nano-baskets. Supramol. Chem. 24, 255–263 (2012)CrossRefGoogle Scholar
  73. 73.
    Mokhtari, B., Pourabdollah, K.: Inclusion extraction of alkali metals by emulsion liquid membranes and nano-baskets of p-tert-calix[4]arene bearing di-[n-(x)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation. Bull. Korean Chem. Soc. 33, 1509–1516 (2012)CrossRefGoogle Scholar
  74. 74.
    Mokhtari, B., Pourabdollah, K.: Inclusion desalination of alkali metal cations by emulsion liquid membranes and nano-baskets of p-tert-calix[4]arene bearing di-[n-(x)sulfonyl carboxamide] and di-(1-propoxy) in para-cone conformation. Desalination 292, 1–8 (2012)CrossRefGoogle Scholar
  75. 75.
    Mokhtari, B., Pourabdollah, K.: Determination of salbutamol in livestock by nano-mediated bonded-phases: nano-baskets of calixarene in partial-cone conformation. J. Chil. Chem. Soc. 58, 827–831 (2012)Google Scholar
  76. 76.
    Mokhtari, B., Pourabdollah, K.: Preparation and characterization of bonded-phases of nano-baskets bearing sulfonyl-carboxamide. J. Liq. Chromatogr. R. T. (2012). doi:  10.1080/10826076.2011.643524
  77. 77.
    Mokhtari, B., Pourabdollah, K.: Metabolic fingerprints by nano-baskets of 1,2-alternate calixarene and emulsion liquid membranes. B. Kor. Chem. Soc. 33(7), 2320–2324 (2012)Google Scholar
  78. 78.
    Mokhtari, B., Pourabdollah, K.: Emulsion liquid membranes for effective inclusion extraction of alkali metals by nano-baskets of calixarene. Syn. React. Inorg. Met. Org. 42(7), 1013–1021 (2012)Google Scholar
  79. 79.
    Mokhtari, B., Pourabdollah, K.: Calorimetric investigation of nano-basket’s binding. Asian J. Chem. 25(1), 13–18 (2013)Google Scholar
  80. 80.
    Mokhtari, B., Pourabdollah, K.: Application of calixarenes in development of sensors. Asian J. Chem. 25(1), 1–12 (2013)Google Scholar
  81. 81.
    Mokhtari, B., Pourabdollah, K.: Applications of nano-baskets in drug development: high solubility and low toxicity. Drug Chem. Toxicol. (2012). doi: 10.3109/01480545.2011.653490
  82. 82.
    Mokhtari, B., Pourabdollah, K.: Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes. J. Incl. Phenom. Macrocycl. Chem. (2012). doi: 10.1007/s10847-012-0210-0
  83. 83.
    Mokhtari, B., Pourabdollah, K.: Chromatographic separation of clenbuterol by bonded-phases bearing nano-baskets of p-tert-calix[4]-1,2-crown-3; -crown-4; -crown-5; and -crown-6. J. Sci. Food Agr. (2012). doi: 10.1002/jsfa.5688
  84. 84.
    Mokhtari, B., Pourabdollah, K.: Nano-baskets in emulsion liquid membranes for selective extraction of alkali metals. J. Chin. Chem. Soc. (2012). doi: 10.1002/jccs.201100737
  85. 85.
    Mokhtari, B., Pourabdollah, K.: Electrochemical study of structural effects in complexation of nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6. Syn. React. Inorg. Met. (2012). doi: 10.1080/15533174.2012.680131
  86. 86.
    Mokhtari, B., Pourabdollah, K.: Emulsion liquid membrane by nano-baskets of calix[4]crown. Korean J. Chem. Eng. (2012). doi: 10.1007/s11814-012-0085-1
  87. 87.
    Mokhtari, B., Pourabdollah, K.: Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets. J. Incl. Phenom. Macrocycl. Chem. (2012). doi: 10.1007/s10847-012-0212-y
  88. 88.
    Mokhtari, B., Pourabdollah, K.: Separation and preconcentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin in blood samples by nano-baskets doped in emulsion liquid membranes. Talanta (2012). doi: 10.1016/j.talanta.2012.07.086

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Razi Chemistry Research Center (RCRC), Shahreza BranchIslamic Azad UniversityShahrezaIran

Personalised recommendations