Skip to main content
Log in

Phenoxathiinsulphone derivatives–cyclodextrin interactions: induced chirality and TDDFT calculations

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion process of phenoxathiin-10,10-dioxide and 2-CH2Br-phenoxathiin-10,10-dioxide in α-, β-, γ- and 2-hydroxypropyl-γ-cyclodextrins was studied by circular dichroism spectroscopy. The dependence of the induced circular dichroism signal on the host concentration was analyzed in terms of a nonlinear model yielding the stoichiometry and the association constants of the complexes. Time dependent density functional theory (TDDFT) calculations were used to rationalize the experimental data considering two aspects. Firstly, to support on theoretical grounds the experimentally observed achirality of the studied compounds that present two structural elements to confer chirality: the butterfly motion of the roof-shaped heteroring and the rotation of the CH2Br group. In this last process, some favorable position of the bromine atom could influence the overall chirality. Secondly, the TDDFT calculations of the polarizations of the electronic transitions in correlation with the signs of the induced dichroic bands were used to establish the axial or equatorial way the guest is included in the host cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kawamura, M., Higashi, M.: Induced circular dichroism spectra of β- and γ-cyclodextrin complexes with indazolinone and related compounds. J. Incl. Phenom. Macrocycl. Chem. 51, 11–15 (2005)

    Article  CAS  Google Scholar 

  2. Marconi, G., Monti, S., Manoli, F., Esposti, A.D., Guerrini, A.: Circular-dichroism studies on artemisinin and epiartemisinin and their β-cyclodextrin complexes in solution. Helv. Chim. Acta 87, 2368–2376 (2004)

    Article  CAS  Google Scholar 

  3. Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W. (eds.): Comprehensive chiroptical spectroscopy, applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules. Wiley, Hoboken (2012)

  4. Hu, J. (ed.): Cyclodextrins:chemistry and physics. Transworld Research Network, Kerala (2010)

  5. Marconi, G., Monti, S., Manoli, F., Ottani, S.: Circular dichroism and theoretical studies on the inclusion of the antimalarian drug licochalcone-A in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57, 279–282 (2007)

    Article  CAS  Google Scholar 

  6. Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 48, 375–378 (1975)

    Article  CAS  Google Scholar 

  7. Kodaka, M.: A general rule for circular dichroism induced by a chiral macrocycle. J. Am. Chem. Soc. 115, 3702–3705 (1993)

    Article  CAS  Google Scholar 

  8. Hillebrand, M., Maior, O., Sahini, VE., Volanschi, E.: Spectral study of some phenoxathiin derivatives and their positive ions. J Chem Soc B 755–761. (1969). doi:10.1039/J29690000755

  9. Ciureanu, M., Hillebrand, M., Volanschi, E.: ESR, optical and cyclic voltammetric study of the electrochemical reduction of dibenz[b, e]thiepinone-5,5-dioxides. J. Electroanal. Chem. 322, 221–232 (1992)

    Article  CAS  Google Scholar 

  10. Constantinescu, E., Hillebrand, M., Volanschi, E., Andrei, M., Ivanescu, G., Maior, O.: Cyclic voltammetry, ESR and spectral investigation of the electrochemical reduction of some acethyl diphenyl sulphides and sulphones. J. Electroanal. Chem. 395, 211–220 (1995)

    Article  Google Scholar 

  11. Ionescu, S., Gavriliu, D., Maior, O., Hillebrand, M.: Excited states properties of some phenoxathiin derivatives. J. Photochem. Photobiol. A 124, 67–73 (1999)

    Article  CAS  Google Scholar 

  12. Preda, L., Lazarescu, V., Hillebrand, M., Volanschi, E.: Reactivity of substituted seven-membered heterocyclic sulfones: spectroelectrochemical study and theoretical modeling. Electrochim. Acta 51, 5587–5595 (2006)

    Article  CAS  Google Scholar 

  13. Volanschi, E., Suh, S.-H., Hillebrand, M.: Theoretical study on the reduction behaviour of sulphur containing heterocycles. I cleavage reaction of the C–S bond in the dibenzo[b, e]thiepinonesulphone class. J. Electroanal. Chem. 602, 181–188 (2007)

    Article  CAS  Google Scholar 

  14. Gad El-karim, I.A.: Quantum mechanical study of substituted phenoxathiin: a study of the structure of fluorinated phenoxathiins. J. Mol. Struct. 945, 17–22 (2010)

    Article  CAS  Google Scholar 

  15. Oana, M., Tintaru, A., Gavriliu, D., Maior, O., Hillebrand, M.: Spectral study and molecular modeling of the inclusion complexes of β-cyclodextrin with some phenoxathiin derivatives. J. Phys. Chem. B 106, 257–263 (2002)

    Article  CAS  Google Scholar 

  16. Sandu, R., Hillebrand, M.: Circular dichroism characterisation of the inclusion complexes of 2-acetyl-phenoxathiin sulphone with cyclodextrins: experimental data and TDDFT calculations. Rev. Roum. Chim. 56, 363–371 (2011)

    CAS  Google Scholar 

  17. Mastryukov, V.S., Chen, K.H., Simonsen, S.H., Allinger, N.L., Boggs, J.E.: Ab initio and molecular mechanics studies of thianthrene and similar molecules. Mol. Struct. 413–414, 1–12 (1997)

    Article  Google Scholar 

  18. Gad El-karim, I.A.: Quantum mechanical calculations on phenoxathiin and azaphenoxathiins heterocycles. J. Mol. Struct. 723, 223–230 (2005)

    Article  CAS  Google Scholar 

  19. Hendsbee, A.D., Masuda, J.D., Piórko, A.: (η5-Cyclopentadienyl)(η6-phenoxathiin10,10-dioxide)iron(II) hexafluoridophosphate and phenoxathiin 10,10-dioxide. Acta Cryst. C67, m351–m354 (2011)

    Google Scholar 

  20. Beni, A.S., Chermahini, A.N., Sharghi, H., Monfared, S.M.: MP2, DFT and ab initio calculations on thioxanthone. Spectrochim. Acta A 82, 49–55 (2011)

    Article  CAS  Google Scholar 

  21. Vasiliu G., Maior, O: Chimia fenoxatiinei. Analele Universităţii din Bucureşti-Chimie 13, 103–111 (1964)

  22. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Rob, M. A., Cheeseman, J. R., Montgomery Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A.: Gaussian 03. Gaussian Inc., Pittsburgh (2003)

  23. Becke, A.D.: Density-functional thermochemistry. III. The role of the exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  24. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)

    Article  CAS  Google Scholar 

  25. Allouche, A.R.: Gabedit—a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2011)

    Article  CAS  Google Scholar 

  26. Zsila, F., Bikadi, Z., Simonyi, M.: Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol. 65, 447–456 (2003)

    Article  CAS  Google Scholar 

  27. Zsila, F., Bikadi, Z., Lockwood, S.F.: In vitro binding of leukotriene B4 (LTB4) to human serum albumin: evidence from spectroscopic, molecular modeling and competitive displacement studies. Bioorg. Med. Chem. Lett. 15, 3725–3731 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2011-3-0281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Hillebrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandu, R., Tablet, C. & Hillebrand, M. Phenoxathiinsulphone derivatives–cyclodextrin interactions: induced chirality and TDDFT calculations. J Incl Phenom Macrocycl Chem 77, 183–193 (2013). https://doi.org/10.1007/s10847-012-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0232-7

Keywords

Navigation