Synthesis and stereochemical configuration of inherently chiral p-tert-butylcalix[4]arene carboxylic acids and their derivatives

  • Andrii O. Karpus
  • Oleksandr A. Yesypenko
  • Leonid P. Andronov
  • Vyacheslav I. BoykoEmail author
  • Zoia V. Voitenko
  • Alexander N. Chernega
  • Vitaly I. Kalchenko
Original Article


Both enantiomers of inherently chiral p-tert-butylcalix[4]arene carboxylic acids with ABHH substitution patterns have been prepared by stereoselective reaction of monopropoxy-p-tert-butylcalix[4]arene with an (R)-N-(1-phenylethyl)bromoacetamide, separation of the diastereomers by column chromatography, and removal of the chiral auxiliary groups. The absolute configuration of obtained compounds has been established by X-ray analysis.

Graphical Abstract


p-tert-Butylcalix[4]arene carboxylic acid Inherently chiral calixarenes Enantiomers Absolute configuration 



This work was partially supported by the State Fund for Fundamental Research of Ukraine.


  1. 1.
    Gutsche, C.D. (ed.): Calixarenes: An Introduction. The Royal Society of Chemistry, Cambridge (2008)Google Scholar
  2. 2.
    Kubo, Y., Maeda, S., Tokita, S., Kubo, M.: Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996)CrossRefGoogle Scholar
  3. 3.
    Zheng, Y.-S., Zhang, C.: Exceptional chiral recognition of racemic carboxylic acids by calix[4]arenes bearing optically pure α, β-amino alcohol groups. Org. Lett. 6, 1189–1192 (2004)CrossRefGoogle Scholar
  4. 4.
    Liu, X.-X., Zheng, Y.-S.: Chiral nitrogen-containing calix[4]crown—an excellent receptor for chiral recognition of mandelic acid. Tetrahedron Lett. 47, 6357–6360 (2006)CrossRefGoogle Scholar
  5. 5.
    Luo, J., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Facile synthesis and optical resolution of inherently chiral fluorescent calix[4]crowns: enantioselective recognition towards chiral leucinol. Tetrahedron 61, 8517–8528 (2005)CrossRefGoogle Scholar
  6. 6.
    Karakucuk, A., Durmaz, M., Sirit, A., Yilmaz, M., Demir, A.S.: Synthesis and chiral recognition properties of two novel chiral calix[4]arene tartaric ester derivatives. Tetrahedron 17, 1963–1968 (2006)CrossRefGoogle Scholar
  7. 7.
    Shirakawa, S., Moriyama, A., Shimizu, S.: Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Org. Lett. 9, 3117–3119 (2007)CrossRefGoogle Scholar
  8. 8.
    Xu, Z.-X., Li, G.-K., Chen, Ch-F, Huang, Z.-T.: Inherently chiral calix[4]arene-based bifunctional organocatalysts for enantioselective aldol reactions. Tetrahedron 64, 8668–8675 (2008)CrossRefGoogle Scholar
  9. 9.
    Narumi, F., Suzuki, T., Onodera, T., Miyano, S.: Syntheses of chirally modified thiacalix[4]arenes with enantiomeric amines and their application to chiral stationary phases for gas chromatography. Enantiomer 5, 83–93 (2000)Google Scholar
  10. 10.
    Krawinkler, K.H., Maier, N.M., Ungaro, R., Sansone, F., Casnati, A., Lindner, W.: Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids. Chirality 15, S17–S23 (2003)CrossRefGoogle Scholar
  11. 11.
    He, Y., Xiao, Y., Meng, L., Zeng, Z., Wu, X., Wu, C.-T.: New type chiral calix[4](aza)crowns: synthesis and chiral recognition. Tetrahedron Lett. 43, 6249–6253 (2002)CrossRefGoogle Scholar
  12. 12.
    Narumi, F., Hattori, T., Matsumura, N., Onodera, T., Katagiri, H., Kabuto, C., Kameyama, H., Miyano, S.: Synthesis of an inherently chiral O,O’-bridged thiacalix[4]crowncarboxylic acid and its application to a chiral solvating agent. Tetrahedron 60, 7827–7833 (2004)CrossRefGoogle Scholar
  13. 13.
    Li, S.-Y., Xu, Y.-W., Liu, J.-M., Su, Ch-Y: Inherently chiral calixarenes: synthesis, optical resolution, chiral recognition and asymmetric catalysis. Int. J. Mol. Sci. 12, 429–455 (2011)CrossRefGoogle Scholar
  14. 14.
    Dieleman, C., Steyer, S., Jeunesse, C., Matt, D.: Diphosphines based on an inherently chiral calix[4]arene scaffold: synthesis and use in enantioselective catalysis. J. Chem. Soc. 2508–2517 (2001). doi: 10.1039/B101369F
  15. 15.
    Narumi, F., Hattori, T., Yamabuki, W., Kabuto, C., Kameyama, H.: Resolution of inherently chiral anti-O,O’-dialkylated calix[4]arenes and determination of their absolute stereochemistries by CD and X-ray methods. Tetrahedron 16, 793–800 (2005)CrossRefGoogle Scholar
  16. 16.
    Boyko, V.I., Shivanyuk, A., Pyrozhenko, V.V., Zubatyuk, R.I., Shishkin, O.V., Kalchenko, V.I.: A stereoselective synthesis of asymmetrically substituted calix[4]arenecarbamates. Tetrahedron Lett. 47, 7775–7778 (2006)CrossRefGoogle Scholar
  17. 17.
    Yakovenko, A.V., Boyko, V.I., Danylyuk, O., Suwinska, K., Lipkowski, J., Kalchenko, V.I.: Diastereoselective lower rim (1S)-camphorsulfonylation as the shortest way to the inherently chiral calix[4]arene. Org. Lett. 9, 1183–1185 (2007)CrossRefGoogle Scholar
  18. 18.
    Xu, Z.-X., Zhang, Ch., Zheng, Q.-Y., Chen, Ch-F, Huang, Z.-T.: A New Approach to enantiopure inherently chiral calix[4]arenes: determination of their absolute configurations. Org. Lett. 9, 4447–4450 (2007)CrossRefGoogle Scholar
  19. 19.
    Xu, Z.-X., Huang, Z.-T., Chen, Ch-F: Synthesis and structures of novel enantiopure inherently chiral calix[4]arene-derived salphen ligands and their transition-metal complexes. Tetrahedron Lett. 50, 5430–5433 (2009)CrossRefGoogle Scholar
  20. 20.
    Boyko, V.I., Matvieiev, YuI, Klyachina, M.A., Yesypenko, O.A., Shishkina, S.V., Shishkin, O.V., Kalchenko, V.I.: Proximal heteroalkylation of monoalkoxycalix[4]arenes in synthesis of inherently chiral molecules. Tetrahedron 65, 4220–4227 (2009)CrossRefGoogle Scholar
  21. 21.
    Caccamese, S., Bottino, A., Cunsolo, F., Parlato, S., Neti, P.: Resolution of inherently chiral calix[4]arenes with AABB and CDCD substitution patterns on the upper and lower rims, respectively. Tetrahedron 11, 3103–3112 (2000)CrossRefGoogle Scholar
  22. 22.
    Hesek, D., Inoue, Y., Drew, M.G., Beer, P.D., Hembury, G.A., Ishida, H., Aoki, F.: Acid-promoted rearrangement of carbonate functionality anchored to the lower rim of a calix[4]arene skeleton: a new class of chiral calix[4]arene and Its chiroptical properties. Org. Lett. 2, 2237–2240 (2000)CrossRefGoogle Scholar
  23. 23.
    Tairov, M.A., Vysotsky, M.O., Kalchenko, O.I., Pyrozhenko, V.V., Kalchenko, V.I.: Symmetrical and inherently chiral water-soluble calix[4]arenes bearing dihydroxyphosphoryl groups. J. Chem. Soc. I, 1405–1411 (2002)Google Scholar
  24. 24.
    Cao, Y.-D., Luo, J., Zheng, Q.-Y., Chen, C.-F., Wang, M.-X., Huang, Z.-T.: Preparation of both antipodes of enantiopure inherently chiral calix[4]crownsю. J. Org. Chem. 69, 206–208 (2004)CrossRefGoogle Scholar
  25. 25.
    Miao, R., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Efficient syntheses and resolutions of inherently chiral calix[4]quinolines in the cone and partial-cone conformation. J. Org. Chem. 70, 7662–7671 (2005)CrossRefGoogle Scholar
  26. 26.
    Talotta, C., Gaeta, C., Troisi, F., Monaco, G., Zanasi, R., Mazzeo, G., Rosini, C., Neri, P.: Absolute configuration assignment of inherently Chiral calix[4]arenes using DFT calculations of chiroptical properties. Org. Lett. 12, 2912–2915 (2010)CrossRefGoogle Scholar
  27. 27.
    Yesypenko, O.A., Boyko, V.I., Klyachina, M.A., Shishkina, S.V., Shishkin, O.V., Pirozhenko, V.V., Tsymbal, I.F., Kalchenko, V.I.: Monosodium salt of p-tert-butylcalix[4]arene in the reactions with electrophilic reagents. Synthesis and structure of monofunctionalized calix[4]arenes. J. Inclusion Phenom. 74, 265–275 (2012)Google Scholar
  28. 28.
    Sheldric, G.M.: SHELXS97. Program for the solution of crystal structure. University of Gottingen, Germany (1997)Google Scholar
  29. 29.
    Sheldric, G.M.: SHELXL97. Program for the refinement of crystal Structures. University of Gottingen, Germany (1997)Google Scholar
  30. 30.
    Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K., Watkin, D.J.: CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Cryst. 36, 1487 (2003)CrossRefGoogle Scholar
  31. 31.
    Cort, A.D., Mandolini, L., Pasquini, C., Schiaffino, L.: “Inherent chirality” and curvature. New J. Chem. 28, 1198–1199 (2004)CrossRefGoogle Scholar
  32. 32.
    Xu, Zh-X, Zhang, Ch., Yang, Y., Chen, Ch-F, Huang, Zh-T: Effective nonenzymatic kinetic resolution of racemic m-nitro-substituted inherently chiral aminocalix[4]arenes. Org. Lett. 10, 477–479 (2008)CrossRefGoogle Scholar
  33. 33.
    Boyko, V.I., Podoprigorina, A.A., Yakovenko, A.V., Pirozhenko, V.V., Kalchenko, V.I.: Alkylation of narrow rim calix[4]arenes in a DMSO-NaOH medium. J. Inclusion Phenom. 50, 193–197 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrii O. Karpus
    • 1
    • 2
  • Oleksandr A. Yesypenko
    • 1
  • Leonid P. Andronov
    • 1
  • Vyacheslav I. Boyko
    • 1
    Email author
  • Zoia V. Voitenko
    • 2
  • Alexander N. Chernega
    • 1
  • Vitaly I. Kalchenko
    • 1
  1. 1.Institute of Organic ChemistryNational Academy of Sciences of UkraineKyiv-94Ukraine
  2. 2.Department of ChemistryKiev National Taras Shevchenko UniversityKyivUkraine

Personalised recommendations