Skip to main content

Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography

Abstract

The crystal structures of the inclusion compounds of thymol, carvacrol and eugenol, (components of essential oils of vegetable origin) in β-cyclodextrin have been determined. Thymol/β-CD crystallizes in the space group P1 containing two host molecules in its asymmetric unit whereas both carvacrol/β-CD and eugenol/β-CD complexes crystallize in the space group C2. In all three complexes two host molecules form head-to-head dimers their guest/host stoichiometry being: 1/2 (carvacrol/β-CD), 2/2 (thymol/β-CD) and 3/2 (eugenol/β-CD). In the cases of the thymol/β-CD and the carvacrol/β-CD complexes the β-CD dimers are arranged according to the channel packing mode. The accommodation of the geometrical isomer guests is performed solely by their hydrophobic groups revealing the leading role of the hydrophobic driving forces in the complexation process whereas the position of their hydroxyl group affects the stoichiometry of the formed dimeric complexes. In the case of the eugenol/β-CD dimeric complex one guest molecule is found lying between the β-CD groups in a sandwich fashion whereas the other two symmetry related guests protrude outwards the narrower rim of the hosts with only their hydrophobic allyl-chain located inside the hosts’ cavities. This arrangement prohibits the formation of a channel and the observed crystal packing is that of a Tetrad mode.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

β-CD:

β-Cyclodextrin

References

  1. 1.

    Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totte, J., Pieters, L., Vlietinck, A.J.: Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the democratic republic of congo. J. Ethnopharmacol. 79, 213–220 (2002)

    Article  CAS  Google Scholar 

  2. 2.

    Didry, N., Dubreuil, L., Pinkas, M.: antibacterial activity of thymol, carvacrol and cinnamaldehyde alone or in combination. Pharmazie 48, 301–304 (1993)

    CAS  Google Scholar 

  3. 3.

    Vazquez, B.I., Fente, C., Franco, C.M., Vazquez, M.J., Cepeda, A.: Inhibitory effects of eugenol and thymol on penicillium citrinum strains in culture media and cheese. Int. J. Food Microbiol. 67, 157–163 (2001)

    Article  CAS  Google Scholar 

  4. 4.

    Venturini, M.E., Blanco, D., Oria, R.: In vitro antifungal activity of several antimicrobial compounds against penicillium expansum. J. Food Prot. 65, 834–839 (2002)

    CAS  Google Scholar 

  5. 5.

    Shimoda, K., Kondo, Y., Nishida, T., Hamada, H., Nakajima, N.: Biotransformation of thymol, carvacrol, and eugenol by cultured cells of eucalyptus perriniana. Phytochemistry 67, 2256–2261 (2006)

    Article  CAS  Google Scholar 

  6. 6.

    Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  7. 7.

    Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19, 344–362 (1980)

    Article  Google Scholar 

  8. 8.

    Mulinacci, N., Melani, F., Vincieri, F.F., Mazzi, G., Romani, A.: H-1-nmr noe and molecular modelling to characterize thymol and carvacrol beta-cyclodextrin complexes. Int. J. Pharm. 128, 81–88 (1996)

    Article  CAS  Google Scholar 

  9. 9.

    Locci, E., Lai, S.M., Piras, A., Marongiu, B., Lai, A.: C-13-cpmas and h-1-nmr study of the inclusion complexes of beta-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354–1366 (2004)

    Article  CAS  Google Scholar 

  10. 10.

    Divakar, S., Maheswaran, M.M.: Structural studies on inclusion compounds of beta-cyclodextrin with some substituted phenols. J. Inclusion Phenom. Mol. Recognit. Chem. 27, 113–126 (1997)

    Article  CAS  Google Scholar 

  11. 11.

    Fernandes, L.P., Ehen, Z., Moura, T.F., Novak, C., Sztatisz, J.: Characterization of lippia sidoides oil extract-beta-cyclodextrin complexes using combined thermoanalytical techniques. J. Therm. Anal. Calorim. 78, 557–573 (2004)

    Article  CAS  Google Scholar 

  12. 12.

    Yang, Y., Song, L.X.: Study on the inclusion compounds of eugenol with alpha-, beta-, gamma- and heptakis (2,6-di-o-methyl)-beta-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 53, 27–33 (2005)

    Article  CAS  Google Scholar 

  13. 13.

    Nuchuchua, O., Samoo, S., Sramala, I., Puttipipatkhachorn, S., Soottitantawat, A., Ruktanonchai, U.: Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res. Int. 42, 1178–1185 (2009)

    Article  CAS  Google Scholar 

  14. 14.

    Fan, Z., Guo, M.J., Dong, B., Jing, Z.L., Chen, X., Diao, C.H.: Structure of the beta-cyclodextrin-thymol supramolecular complex in the solid state and in solution. Acta Chim. Sinica 68, 798–802 (2010)

    CAS  Google Scholar 

  15. 15.

    Daferera, D.J., Tarantilis, P.A., Polissiou, M.G.: Characterization of essential oils from lamiaceae species by fourier transform raman spectroscopy. J. Agric. Food Chem. 50, 5503–5507 (2002)

    Article  CAS  Google Scholar 

  16. 16.

    Otwinowski, Z., Minor, W.: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Google Scholar 

  17. 17.

    Bethanis, K., Tzamalis, P., Hountas, A., Tsoucaris, G., Kokkinou, A., Mentzafos, D.: New developments of the twin algorithm for phase extension and refinement in disordered supramolecular structures. Acta Crystallogr. A 56, 606–608 (2000)

    Article  CAS  Google Scholar 

  18. 18.

    Beurskens, P.T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Gould, R.O., Smits, J.M.M.: The DIRDIF2008 program system. Crystallography Laboratory, University of Nijmegen, The Netherlands (1998)

  19. 19.

    Rontoyianni, A., Mavridis, I.M.: The crystal-structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with 3,5-dimethylbenzoic acid. J. Inclusion Phenom. Mol. Recognit. Chem. 18, 211–227 (1994)

    Article  CAS  Google Scholar 

  20. 20.

    Sheldrick, G.M.: A short history of shelx. Acta Crystallogr. A 64, 112–122 (2008)

    Article  CAS  Google Scholar 

  21. 21.

    Hubschle, C.B., Sheldrick, G.M., Dittrich, B.: Shelxle: a qt graphical user interface for shelxl. J. Appl. Crystallogr. 44, 1281–1284 (2011)

    Article  Google Scholar 

  22. 22.

    Spek, A.L.: Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009)

    Article  CAS  Google Scholar 

  23. 23.

    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  24. 24.

    Steiner, T.: Unrolling the hydrogen bond properties of C-H…O interactions. Chem. Commun. 8, 727–734 (1997)

    Google Scholar 

  25. 25.

    Takahashi, H., Tsuboyama, S., Umezawa, Y., Honda, K., Nishio, M.: Ch/pi interactions as demonstrated in the crystal structure of host/guest compounds. A database study. Tetrahedron 56, 6185–6191 (2000)

    Article  CAS  Google Scholar 

  26. 26.

    Mentzafos, D., Mavridis, I.M., Lebas, G., Tsoucaris, G.: Structure of the 4-tert-butylbenzyl alcohol beta-cyclodextrin complex—common features in the geometry of beta-cyclodextrin dimeric complexes. Acta Crystallogr. B Struct. Sci. 47, 746–757 (1991)

    Article  Google Scholar 

  27. 27.

    Brett, T.J., Alexander, J.M., Stezowski, J.J.: Chemical insight from crystallographic disorder-structural studies of supramolecular photochemical systems. Part 2. The beta-cyclodextrin-4,7-dimethylcoumarin inclusion complex: a new beta-cyclodextrin dimer packing type, unanticipated photoproduct formation, and an examination of guest influence on beta-cd dimer packing. J. Chem. Soc. Perkin Trans. 2 6, 1095–1103 (2000)

    Article  Google Scholar 

  28. 28.

    Tsorteki, F., Bethanis, K., Pinotsis, N., Giastas, P., Mentzafos, D.: Inclusion compounds of plant growth regulators in cyclodextrins. V. 4-chlorophenoxyacetic acid encapsulated in beta-cyclodextrin and heptakis(2,3,6-tri-o-methyl)-beta-cyclodextrin. Acta Crystallogr. B Struct. Sci. 61, 207–217 (2005)

    Article  Google Scholar 

  29. 29.

    Zhan, H., Jiang, Z.T., Wang, Y., Li, R., Dong, T.S.: Molecular microcapsules and inclusion interactions of eugenol with beta-cyclodextrin and its derivatives. Eur. Food Res. Technol. 227, 1507–1513 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the European Community, Research Infrastructure Action under the FP6 “Structuring the European Research Area Specific Programme”, Contract Number RII3-CT-2004-506008 for support of the work of data collection at the EMBL X11 beamline at the DORIS storage ring, DESY, Hamburg (Project no.: PX-07-91).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kostas Bethanis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bethanis, K., Tzamalis, P., Tsorteki, F. et al. Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography. J Incl Phenom Macrocycl Chem 77, 163–173 (2013). https://doi.org/10.1007/s10847-012-0230-9

Download citation

Keywords

  • Thymol
  • Carvacrol
  • Eugenol
  • β-Cyclodextrin
  • Inclusion complexes
  • X-ray crystallography