Advertisement

Synthesis, characterization and sustaining controlled release effect of mesoporous SBA-15/ramipril composite drug

  • Qing-Zhou ZhaiEmail author
  • Yan-Ying Wu
  • Xiao-Han Wang
Original Article

Abstract

A loading of ramipril in SBA-15 (Santa Barbara Amorphous) mesoporous material was studied. (SBA-15)-ramipril composite material was characterized by chemical analysis, infrared spectroscopy, powder X-ray diffraction, low temperature N2 adsorption–desorption at 77 K characterization techniques. Ramipril drug release processes from SBA-15 host to simulated body fluid (SBF), simulated gastric juice (SGJ), simulated intestinal fluid (SIF) were monitored in a simulated way and actions of the sustained release of (SBA-15)-ramipril was studied. The results showed that the loading amount of ramipril drug in SBA-15 was 90.30 mg/g. The cumulative sustained release rate of ramipril composite drug in SBF achieved 99.7 % after 27 h. When the sustained release of composite drug in SGJ was 8 h, the maximum cumulative sustained release ratio achieved 54.9 %. When the sustained release of composite drug was 9 h in SIF, the maximum cumulative sustained release ratio achieved 34.9 %. The method described in this study is suitable for carrying ramipril drug on SBA-15, and a new carrier to load ramipril drug was found. Meanwhile, the efficacy of ramipril drug and time efficacy could be improved.

Keywords

Ramipril SBA-15 mesoporous material carrier Drug sustained release Body fluid Gastric juice Intestinal fluid 

Notes

Acknowledgments

The authors acknowledge financial support by Education Department of Jilin Province, P. R. China. The number of the project was 2010JYT10, KYC -JC-XM-2010-014.

References

  1. 1.
    Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieve synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)CrossRefGoogle Scholar
  2. 2.
    Suh, M., Lee, H.J., Park, J.Y., Lee, H., Kwon, Y.U., Kim, D.J.: A mesoporous silica thin film as uptake host for guest molecules with retarded release kinetics. Chem. Phys. Chem. 9, 1402–1408 (2008)CrossRefGoogle Scholar
  3. 3.
    Kortesuo, P., Ahola, M., Karlsson, S., Kangasniemi, I., Kiesvaara, J., Yli-Urpo, A.: Sol-gel-processed sintered silica xerogel as a carrier in controlled drug delivery. J. Biomed. Mater. Res. 44B, 162–167 (1999)CrossRefGoogle Scholar
  4. 4.
    Barbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., Larkin, M., Calleja, S., Bush, A.: Silica particles: a novel drug-delivery system. Adv. Mater. 16, 1959–1966 (2004)CrossRefGoogle Scholar
  5. 5.
    Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997)CrossRefGoogle Scholar
  6. 6.
    Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998)CrossRefGoogle Scholar
  8. 8.
    Ajitha, S., Sugunan, S.: Tuning mesoporous molecular sieve SBA-15 for the immobilization of α-amylase. J. Porous Mater. 17, 341–349 (2010)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Zhou, G., Li, C., Qin, D., Qiao, W., Chu, B.: Adsorption and catalytic activity of porcine pancreatic liase on rod-like SBA-15 mesoporous material. Colloid Surf. A Physicochem. Eng. Aspects 341, 79–85 (2009)CrossRefGoogle Scholar
  10. 10.
    Ma, J., Chu, J., Qiang, L.S., Xue, J.Q.: Research on the advances in modification of SBA-15 and its application. Bull. Chin. Ceram. Soc. 31, 301–305 (2012)Google Scholar
  11. 11.
    Zhao, F., Li, G., Wang, X., Sun, D., Jin, C.: Loading and release of ibuprofen on mesoporous molecular sieve Ti-HMS. J. Porous Mater. 17, 629–634 (2010)CrossRefGoogle Scholar
  12. 12.
    Luan, Z.H., Hartmann, M., Zhao, D.Y., Kevan, L.: Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chem. Mater. 11, 1621–1627 (1999)CrossRefGoogle Scholar
  13. 13.
    Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24, 721–734 (1990)CrossRefGoogle Scholar
  14. 14.
    Horcajada, P., Ramila, A., Perez-Pariente, J., Vallet-Regi, M.: Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor. Mesopor. Mater. 68, 105–109 (2004)CrossRefGoogle Scholar
  15. 15.
    Hisham, E.A.: Spectrophotometric and spectrofluorimetric methods for the determination of ramipril in its pure and dosage form. Spectrochim Acta 66A, 701–706 (2006)Google Scholar
  16. 16.
    Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  17. 17.
    Barrett, E., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances: computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 350–373 (1951)CrossRefGoogle Scholar
  18. 18.
    Vradman, L., Landau, M.V., Kantorovieh, D., Koltypin, Y., Gedanken, A.: Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica. Micropor. Mesopor. Mater. 79, 307–318 (2005)CrossRefGoogle Scholar
  19. 19.
    Doadrio, J.C., Sousa, E.M.B., Izquierdo-Barba, I., Doadrio, A.L., Perez-Pariente, J., Vallet-Regi, M.: Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem. 16, 462–466 (2006)CrossRefGoogle Scholar
  20. 20.
    Vallet-Regi, M., Doadrio, J.C., Doadrio, A.L., Izquierdo-Barba, I., Perez-Pariente, J.: Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics 172, 435–439 (2004)CrossRefGoogle Scholar
  21. 21.
    Doadrio, A.L., Sousa, E.M.B., Doadrio, J.C., Perez-Pariente, J., Izquierdo-Barba, I., Vallet-Regi, M.: Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control. Release 97, 125–132 (2004)CrossRefGoogle Scholar
  22. 22.
    Higuchi, T.: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145–1147 (1963)CrossRefGoogle Scholar
  23. 23.
    Yang, L.B., Fassihix, A.R.: Zero-order release kinetics from a self-correcting floatable asymmetric configuration drug delivery system. J. Pharm. Sci. 85, 170–173 (1996)CrossRefGoogle Scholar
  24. 24.
    Kim, H.J., Ahn, J.E., Haam, S.J., Shul, Y.G., Song, S.Y., Tatsumi, T.S.: Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting. J. Mater. Chem. 16, 1617–1621 (2006)CrossRefGoogle Scholar
  25. 25.
    Fassihi, A.R., Ritschel, W.A.: Multiple-layer, direct-compression, controlled-release system: in vitro and in vivo evaluation. J. Pharm. Sci. 82, 750–754 (1993)CrossRefGoogle Scholar
  26. 26.
    Song, S.M., Wang, Z.L., Li, W.B.: Physical Chemistry, pp. 219–231. Higher Education Publishing House, Beijing (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Research Center for NanotechnologyChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations