Advertisement

A thermodynamic study of α-, β-, and γ-cyclodextrin-complexed m-methyl red in alkaline solutions

  • Sa’ib J. KhouriEmail author
  • Ibrahim A. Abdel-Rahim
  • Ehab M. Shamaileh
Original Article

Abstract

The UV/Visible spectra of m-methyl red (m-MR) ({3-[4-(dimethyl-amino) phenylazo] benzoic acid}) were examined in basic, acidic and strongly acidic aqueous solutions. The observed spectra of m-MR were analyzed and compared with the tautomeric and resonance structures that suggested theoretically. Three isosbestic points in the spectra were observed around 508, 464 and 443 nm representing three different equilibriums between four different species of m-MR. The inclusion constant (Kf) for the inclusion of basic form of m-MR with alpha-, Beta-, and gamma-Cyclodextrin (α-, β- and γ-CD) was evaluated at different temperatures using Benesi-Hildebrand method. The values of Kf at 25 °C were found to be 8.70 × 103, 4.93 × 103 mol−1 dm3 and 2.95 × 107 mol−2 dm6 basis on the inclusion complex ratios (m-MR:CD) of 1:1, 1:1, and 2:1 respectively. The values of the thermodynamic quantities ΔH°, ΔS°, ΔG° for the different inclusion processes were calculated by using Van’t Hoff plot. For all cases of the studied inclusion processes, these inclusions were favored through entropy and enthalpy changes.

Keywords

Inclusion complexes Cyclodextrins Formation constant m-methyl red α- β- and γ-Cyclodextrin 

Notes

Acknowledgments

This work was supported by the University of Jordan, Amman, Jordan.

References

  1. 1.
    Szejtli, J.: Utilization of cyclodextrins in industrial products and processes. J. Mater. Chem. 7, 575–587 (1997)CrossRefGoogle Scholar
  2. 2.
    Yoshida, N., Seiyama, A., Fujimoto, M.: Stability and structure of the inclusion complexes of alkyl-substituted hydroxyphenylazo derivatives of sulfanilic acid with alpha- and beta-cyclodextrins. J. Phys. Chem. 94, 4254–4259 (1990)CrossRefGoogle Scholar
  3. 3.
    Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Electrochemical studies of cationic drug inclusion complexes with α- and β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 10, 497–505 (1991)CrossRefGoogle Scholar
  4. 4.
    Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrin. Chem. Rev. 98, 1829–1873 (1998)CrossRefGoogle Scholar
  5. 5.
    Khouri, S.J., Richter, D., Buss, V.: Circular dichroism and theoretical calculations of pinacyanol dimer inclusion in γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 65, 287–292 (2009)CrossRefGoogle Scholar
  6. 6.
    Wang, H.Y., Han, J., Feng, X.G.: Spectroscopic study of orange G–β-Cyclodextrin complex and its analytical application. Spectrochim. Acta, Part A 66, 578–585 (2007)CrossRefGoogle Scholar
  7. 7.
    Giacolone, F., D’Anna, F., Giacolone, R., Gruttadauria, M., Riela, S., Noto, R.: Cyclodextrin-[60] fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Lett. 47, 8105–8108 (2006)CrossRefGoogle Scholar
  8. 8.
    Schiller, R.L., Coates, J.H., Lincoln, S.F.: Kinetic and equilibrium studies of crystal violet–cyclodextrin inclusion complexes. Chem. Soc. J. Faraday Trans. 1(80), 1257–1266 (1984)CrossRefGoogle Scholar
  9. 9.
    Clarke, R.J., Coates, J.H., Lincoln, S.F.: Kinetic and equilibrium studies of cyclomalto-octaose (γ-cyclodextrin)-methyl orange inclusion complexes. Carbohydr. Res. 127, 181–191 (1984)CrossRefGoogle Scholar
  10. 10.
    Hirai, H., Toshima, N., Uenoyama, S.: Inclusion complex formation of γ-cyclodextrin. One host-two guest complexation with water-soluble dyes in ground state. Bull. Chem. Soc. Jpn. 58, 1156–1164 (1985)CrossRefGoogle Scholar
  11. 11.
    Tawarah, K.M., Abu-Shamleh, H.M.: A spectrophotometric determination of the formation constants of the inclusion complexes of α- and β-cyclodextrins with the azonium and ammonium tautomers of methyl orange and methyl yellow. J. Incl. Phenom. Macrocycl. Chem. 11, 29–40 (1991)CrossRefGoogle Scholar
  12. 12.
    Tawarah, K.M.: A thermodynamic study of the inclusion processes of α- and β-cyclodextrins with the acid forms of methyl orange and methyl yellow. J. Incl. Phenom. Macrocycl. Chem. 14, 195–204 (1992)CrossRefGoogle Scholar
  13. 13.
    Tawarah, K.M.: A thermodynamic study of the association of the acid form of methyl orange with cyclodextrins. Dyes Pig. 19, 59–67 (1992)CrossRefGoogle Scholar
  14. 14.
    Tawarah, K.M., Khouri, S.J.: An equilibrium study of p-Methyl Red inclusion complexes with α- and β-cyclodextrins. Carbohydr. Res. 245, 165–173 (1993)CrossRefGoogle Scholar
  15. 15.
    Tawarah, K.M., Wazwaz, A.A.: Conductance study of the binding of methyl orange, o-methyl red and p-methyl red anions by α-cyclodextrin in water. J. Chem. Soc. Faraday Trans. 89, 1729–1732 (1993)CrossRefGoogle Scholar
  16. 16.
    Tawarah, K.M., Wazwaz, A.A.: A conductance study of the binding of methyl orange, o-methyl red and p-methyl red anions by β-cyclodextrin in water. Ber. Bunsenges. Phys. Chem. 97, 727–731 (1993)CrossRefGoogle Scholar
  17. 17.
    Clarke, R.J., Coates, J.H., Lincoln, S.F.: Complexation of roccellin by β- and γ-cyclodextrin. J. Chem. Soc. Faraday Trans. 82, 2333–2343 (1986)CrossRefGoogle Scholar
  18. 18.
    Tawarah, K.M., Khouri, S.J.: Determination of the stability and stoichiometry of p-methyl red inclusion complexes with γ-cyclodextrin. Dyes Pig. 45, 229–233 (2000)CrossRefGoogle Scholar
  19. 19.
    Anjaneyulu, Y., Chary, N.S., Raj, D.S.S.: Decolourization of industrial effluents—available methods and emerging technologies: a review. Rev. Environ. Sci. Biotechnol. 4, 245–273 (2005)CrossRefGoogle Scholar
  20. 20.
    Morley, J., Guy, O., Charlton, M.: Molecular modeling studies on the photochemical stability of azo dyes. J. Phys. Chem. A 108, 10542–10550 (2004)CrossRefGoogle Scholar
  21. 21.
    Zhao, X.: Analysis of fungal degradation products of azo dyes, doctorate dissertation, the university of Georgia. Georgia, Athens (2004)Google Scholar
  22. 22.
    Park, S., Lee, C., Min, K., Lee, N.: Structural and conformational studies of ortho-, meta-, and para-methyl red upon proton gain and loss. Bull. Korean Chem. Soc. 26, 1170–1176 (2005)CrossRefGoogle Scholar
  23. 23.
    Fifield, F., Kealey, D.: Principles and practice of analytical chemistry, 5th edn. Blackwell Science Ltd, London (2000)Google Scholar
  24. 24.
    Christian, G.: Analytical chemistry, 6th edn. Wiley, India (2004)Google Scholar
  25. 25.
    Patnaik, P.: Dean’s analytical chemistry handbook, 2nd edn. McGraw-Hill Companies, New York (2004)Google Scholar
  26. 26.
    Benesi, H., Hildebrand, J.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  27. 27.
    Cramer, F., Saenger, W., Spatz, H-Ch.: Inclusion compounds. XIX.1a the formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Amer. Chem. Soc. 89, 14–20 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sa’ib J. Khouri
    • 1
    Email author
  • Ibrahim A. Abdel-Rahim
    • 2
  • Ehab M. Shamaileh
    • 2
  1. 1.Department of ChemistryAmerican University of Madaba (AUM)MadabaJordan
  2. 2.Department of ChemistryUniversity of JordanAmmanJordan

Personalised recommendations