Skip to main content
Log in

A thermodynamic study of α-, β-, and γ-cyclodextrin-complexed m-methyl red in alkaline solutions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The UV/Visible spectra of m-methyl red (m-MR) ({3-[4-(dimethyl-amino) phenylazo] benzoic acid}) were examined in basic, acidic and strongly acidic aqueous solutions. The observed spectra of m-MR were analyzed and compared with the tautomeric and resonance structures that suggested theoretically. Three isosbestic points in the spectra were observed around 508, 464 and 443 nm representing three different equilibriums between four different species of m-MR. The inclusion constant (Kf) for the inclusion of basic form of m-MR with alpha-, Beta-, and gamma-Cyclodextrin (α-, β- and γ-CD) was evaluated at different temperatures using Benesi-Hildebrand method. The values of Kf at 25 °C were found to be 8.70 × 103, 4.93 × 103 mol−1 dm3 and 2.95 × 107 mol−2 dm6 basis on the inclusion complex ratios (m-MR:CD) of 1:1, 1:1, and 2:1 respectively. The values of the thermodynamic quantities ΔH°, ΔS°, ΔG° for the different inclusion processes were calculated by using Van’t Hoff plot. For all cases of the studied inclusion processes, these inclusions were favored through entropy and enthalpy changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Szejtli, J.: Utilization of cyclodextrins in industrial products and processes. J. Mater. Chem. 7, 575–587 (1997)

    Article  CAS  Google Scholar 

  2. Yoshida, N., Seiyama, A., Fujimoto, M.: Stability and structure of the inclusion complexes of alkyl-substituted hydroxyphenylazo derivatives of sulfanilic acid with alpha- and beta-cyclodextrins. J. Phys. Chem. 94, 4254–4259 (1990)

    Article  CAS  Google Scholar 

  3. Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Electrochemical studies of cationic drug inclusion complexes with α- and β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 10, 497–505 (1991)

    Article  CAS  Google Scholar 

  4. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrin. Chem. Rev. 98, 1829–1873 (1998)

    Article  CAS  Google Scholar 

  5. Khouri, S.J., Richter, D., Buss, V.: Circular dichroism and theoretical calculations of pinacyanol dimer inclusion in γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 65, 287–292 (2009)

    Article  CAS  Google Scholar 

  6. Wang, H.Y., Han, J., Feng, X.G.: Spectroscopic study of orange G–β-Cyclodextrin complex and its analytical application. Spectrochim. Acta, Part A 66, 578–585 (2007)

    Article  Google Scholar 

  7. Giacolone, F., D’Anna, F., Giacolone, R., Gruttadauria, M., Riela, S., Noto, R.: Cyclodextrin-[60] fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Lett. 47, 8105–8108 (2006)

    Article  Google Scholar 

  8. Schiller, R.L., Coates, J.H., Lincoln, S.F.: Kinetic and equilibrium studies of crystal violet–cyclodextrin inclusion complexes. Chem. Soc. J. Faraday Trans. 1(80), 1257–1266 (1984)

    Article  Google Scholar 

  9. Clarke, R.J., Coates, J.H., Lincoln, S.F.: Kinetic and equilibrium studies of cyclomalto-octaose (γ-cyclodextrin)-methyl orange inclusion complexes. Carbohydr. Res. 127, 181–191 (1984)

    Article  CAS  Google Scholar 

  10. Hirai, H., Toshima, N., Uenoyama, S.: Inclusion complex formation of γ-cyclodextrin. One host-two guest complexation with water-soluble dyes in ground state. Bull. Chem. Soc. Jpn. 58, 1156–1164 (1985)

    Article  CAS  Google Scholar 

  11. Tawarah, K.M., Abu-Shamleh, H.M.: A spectrophotometric determination of the formation constants of the inclusion complexes of α- and β-cyclodextrins with the azonium and ammonium tautomers of methyl orange and methyl yellow. J. Incl. Phenom. Macrocycl. Chem. 11, 29–40 (1991)

    Article  CAS  Google Scholar 

  12. Tawarah, K.M.: A thermodynamic study of the inclusion processes of α- and β-cyclodextrins with the acid forms of methyl orange and methyl yellow. J. Incl. Phenom. Macrocycl. Chem. 14, 195–204 (1992)

    Article  CAS  Google Scholar 

  13. Tawarah, K.M.: A thermodynamic study of the association of the acid form of methyl orange with cyclodextrins. Dyes Pig. 19, 59–67 (1992)

    Article  CAS  Google Scholar 

  14. Tawarah, K.M., Khouri, S.J.: An equilibrium study of p-Methyl Red inclusion complexes with α- and β-cyclodextrins. Carbohydr. Res. 245, 165–173 (1993)

    Article  CAS  Google Scholar 

  15. Tawarah, K.M., Wazwaz, A.A.: Conductance study of the binding of methyl orange, o-methyl red and p-methyl red anions by α-cyclodextrin in water. J. Chem. Soc. Faraday Trans. 89, 1729–1732 (1993)

    Article  CAS  Google Scholar 

  16. Tawarah, K.M., Wazwaz, A.A.: A conductance study of the binding of methyl orange, o-methyl red and p-methyl red anions by β-cyclodextrin in water. Ber. Bunsenges. Phys. Chem. 97, 727–731 (1993)

    Article  CAS  Google Scholar 

  17. Clarke, R.J., Coates, J.H., Lincoln, S.F.: Complexation of roccellin by β- and γ-cyclodextrin. J. Chem. Soc. Faraday Trans. 82, 2333–2343 (1986)

    Article  CAS  Google Scholar 

  18. Tawarah, K.M., Khouri, S.J.: Determination of the stability and stoichiometry of p-methyl red inclusion complexes with γ-cyclodextrin. Dyes Pig. 45, 229–233 (2000)

    Article  CAS  Google Scholar 

  19. Anjaneyulu, Y., Chary, N.S., Raj, D.S.S.: Decolourization of industrial effluents—available methods and emerging technologies: a review. Rev. Environ. Sci. Biotechnol. 4, 245–273 (2005)

    Article  CAS  Google Scholar 

  20. Morley, J., Guy, O., Charlton, M.: Molecular modeling studies on the photochemical stability of azo dyes. J. Phys. Chem. A 108, 10542–10550 (2004)

    Article  CAS  Google Scholar 

  21. Zhao, X.: Analysis of fungal degradation products of azo dyes, doctorate dissertation, the university of Georgia. Georgia, Athens (2004)

    Google Scholar 

  22. Park, S., Lee, C., Min, K., Lee, N.: Structural and conformational studies of ortho-, meta-, and para-methyl red upon proton gain and loss. Bull. Korean Chem. Soc. 26, 1170–1176 (2005)

    Article  CAS  Google Scholar 

  23. Fifield, F., Kealey, D.: Principles and practice of analytical chemistry, 5th edn. Blackwell Science Ltd, London (2000)

    Google Scholar 

  24. Christian, G.: Analytical chemistry, 6th edn. Wiley, India (2004)

    Google Scholar 

  25. Patnaik, P.: Dean’s analytical chemistry handbook, 2nd edn. McGraw-Hill Companies, New York (2004)

    Google Scholar 

  26. Benesi, H., Hildebrand, J.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  27. Cramer, F., Saenger, W., Spatz, H-Ch.: Inclusion compounds. XIX.1a the formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Amer. Chem. Soc. 89, 14–20 (1967)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Jordan, Amman, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa’ib J. Khouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khouri, S.J., Abdel-Rahim, I.A. & Shamaileh, E.M. A thermodynamic study of α-, β-, and γ-cyclodextrin-complexed m-methyl red in alkaline solutions. J Incl Phenom Macrocycl Chem 77, 105–112 (2013). https://doi.org/10.1007/s10847-012-0221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0221-x

Keywords

Navigation