Advertisement

Synthesis and characterization of new organocobaloxime derivatives with asymmetric dioxime ligands

  • Mukadder Erdem-Tuncmen
  • Fatma KaripcinEmail author
Original Article

Abstract

New organocobaloxime derivatives of the types [Co(HL)2(All)X], [CoL2(All)XB2F4] and [CoL2(All)X(Cu(phen))2](ClO4)2 [H2L1 = 4-(4-chlorophenylamino)biphenylglyoxime and H2L2 = 4-(naphthyl-1-amino)biphenylglyoxime; phen = 1,10-phenanthroline; All = Allyl; X = H2O, py (pyridine), APy (acetylpyridine)] were synthesized and characterized by elemental analysis, molar conductance, FT-IR, 1H NMR and magnetic susceptibility measurements. Trinuclear complexes {CoL2(All)X[Cu(phen)]2}(ClO4)2 have planar N-donor heterocyclic base [1,10-phenanthroline (phen)]. The IR spectra indicated that the complexes coordinate through the N atom of the oxime group of each ligand. The magnetic susceptibilities of the complexes indicated that they are diamagnetic (low-spin d 6 octahedral) except trinuclear complex which show a subnormal magnetic moment.

Keywords

Organometallic compounds Bimetallic BF2+ bridged Thermochemistry Metal complexes 

Notes

Acknowledgments

This work was supported by the Research Fund of Süleyman Demirel University, Project No: 1505-D-07 (Isparta/Turkey).

Supplementary material

10847_2012_220_MOESM1_ESM.docx (323 kb)
Supplementary Materials- 1H-NMR spectra of the compounds are given this section. (DOCX 322 kb)

References

  1. 1.
    Tschugaeff, L.: Ueber ein neues, empfindliches reagens auf nickel. Ber. Dtsch. Chem. Ges. 38, 2520–2522 (1905)CrossRefGoogle Scholar
  2. 2.
    Chakravorty, A.: Structure chemistry of transition metal complexes of oximes. Coord. Chem. Rev. 13, 1–46 (1974)CrossRefGoogle Scholar
  3. 3.
    Kukushkin, V.Y., Pombeiro, A.J.L.: Oxime and oximate metal complexes: unconventional synthesis and reactivity. Coord. Chem. Rev. 181, 147–175 (1999)CrossRefGoogle Scholar
  4. 4.
    Chaudhuri, P.: Homo- and hetero-polymetallic exchange coupled metal-oximates. Coord. Chem. Rev. 243, 143–190 (2003)CrossRefGoogle Scholar
  5. 5.
    Dolphin, D. (ed.): B12. Wiley, New York (1982)Google Scholar
  6. 6.
    Schrauzer, G.N., Kohnle, J.: Coenzym B12-modelle. Chem. Ber. 97, 3056–3064 (1964)CrossRefGoogle Scholar
  7. 7.
    Schrauzer, G.N.: Organocobalt chemistry of vitamin B12 model compounds (cobaloximes). Acc. Chem. Res. 1, 97–103 (1968)CrossRefGoogle Scholar
  8. 8.
    Rockenbauer, A., Eyor, M., Kwiecincki, M., Tyrlik, S.: Electron-paramagnetic-res studies of solvent coordination in bis(dimethylglyoxime)cobalt-II complexes as catalysts for hydrogenation of nitrobenzene. Inorg. Chim. Acta 58, 237–242 (1982)CrossRefGoogle Scholar
  9. 9.
    Nemeth, S., Simandi, L.: Homogeneous catalytic-oxidation of ortho-phenylenediamine by dioxygen in the presence of cobaloxime(II) derivatives—synthesis of substituted 2H-benzimidazoles. J. Mol. Catal. 14, 87–93 (1982)CrossRefGoogle Scholar
  10. 10.
    Bresciani-Pahor, N., Forcolin, M., Marzilli, L.G., Randaccio, L., Summers, M.F., Toscano, P.J.: Organocobalt-B12 models-axial ligand effects on the structural and coordination chemistry of cobaloximes. Coord. Chem. Rev. 63, 1–125 (1985)CrossRefGoogle Scholar
  11. 11.
    Lopez, C., Alvarez, S., Solans, X., Font-Altaba, M.: Structure–NMR correlations in halo(1igand)bis(dioximato)cobalt(III) complexes. Inorg. Chem. 25, 2962–2969 (1986)CrossRefGoogle Scholar
  12. 12.
    Xin, Z., Deyan, H., Yizhi, L., Huilan, C.: Structure and thermal decomposition studies on alkylcobaloxime B12 model compounds with 1,2-cyclohexanedion dioxime as equatorial ligand. Inorg. Chim. Acta 359, 1121–1128 (2006)CrossRefGoogle Scholar
  13. 13.
    Tada, M., Kaneko, K.: (Triphenyltin)cobaloxime as a reagent for radical generation from bromides. J. Org. Chem. 60, 6635–6636 (1995)CrossRefGoogle Scholar
  14. 14.
    Brown, T.M., Cooksey, C.J., Dronsfield, A.T., Wilkinson, A.S.: Cobaloximes as environmentally advantageous alternatives to organotin hydrides in iodine atom abstraction routes to benzyl radicals. Appl. Organomet. Chem. 10, 415–420 (1996)CrossRefGoogle Scholar
  15. 15.
    Gill, G.B., Pattenden, G., Roan, G.A.: Cobalt pi-cations in carbocyclic ring constructions. Tetrahedron Lett. 37, 9369–9372 (1996)CrossRefGoogle Scholar
  16. 16.
    Randaccio, L., Bresciani-Pahor, N., Zangrando, E., Marzilli, L.G.: Structural properties of organocobalt coenzyme B12 models. Chem. Rev. 18, 225–250 (1989); refs. cited thereinGoogle Scholar
  17. 17.
    Gupta, B.D., Dixit, V., Das, I.: Co–C bond cleavage in the reactions of alkyl, benzyl and heteroaromaticmethyl cobaloximes with arene sulfenyl chloride: homolytic and heterolytic pathways. J. Organomet. Chem. 572, 49–58 (1999)CrossRefGoogle Scholar
  18. 18.
    Gupta, B. D., Vijaikanth, V., Singh, V.: Organocobaloximes: synthesis, oxygen insertion and kinetics. J. Organomet. Chem. 570, 1–7 (1998); refs. cited thereinGoogle Scholar
  19. 19.
    Gupta, B.D., Qanungo, K., Barclay, T., Cordes, W.: Steric cis influence and lateral compression of the metallabicycle in bis(dioxime) vitamin B-12 models. J. Organomet. Chem. 560, 155–161 (1998)CrossRefGoogle Scholar
  20. 20.
    Gupta, B.D., Singh, V., Qanungo, K., Vijaikanth, V., Yamuna, R., Barclay, T., Cordes, W.: Organocobaloximes with mixed-dioxime equatorial ligands: a one-pot synthesis. J. Organomet. Chem. 602, 1–4 (2000)CrossRefGoogle Scholar
  21. 21.
    Brown, D.G.: The chemistry of vitamin B12 and related inorganic model systems. Prog. Inorg. Chem. 19, 105–106 (1975)CrossRefGoogle Scholar
  22. 22.
    Hansen, L.M., Pavar-Kumar, P.N.V., Marynick, D.S.: Electronic-structure of the coenzyme vitamin-B12 and related systems. 1. Co(DH)2(L)(R) compounds (DH = dimethylglyoxime, L = NH3, py, 2-NH2py, 5,6-dimethylbenzimidazole, R = CH3, i-C3H7, 5′-deoxyadenosyl) as model systems for the vitamin-B12 coenzyme. Inorg. Chem. 33, 728–735 (1994)CrossRefGoogle Scholar
  23. 23.
    Gupta, B.D., Qanungo, K.: Organobridged dicobaloximes: synthesis and NMR correlation. J. Organomet. Chem. 534, 213–220 (1997)CrossRefGoogle Scholar
  24. 24.
    Kolawole, G.A., Ndahi, N.P.: Direct cobalt-carbon bond as possible non-organometallic models for vitamin B12. Synth. React. Inorg. Met. Org. Chem. 34, 1563–1580 (2004)Google Scholar
  25. 25.
    Lopez, C., Alvarez, S., Aguilo, M., Solans, X., Font-Altaba, M.: Synthesis and structure of chloro(ligand)bis(diphenylglyoximato)cobalt(III) complexes. Inorg. Chim. Acta 127, 153–159 (1987)CrossRefGoogle Scholar
  26. 26.
    Lopez, C., Alvarez, S., Font-Bardia, M., Solans, X.: New organometallic cobaloximes containing an equatorial diphenylglyoximato(-1) ligand—comparison between their properties and those of other B12-model compounds—crystal-structure of trans-[Co(dpgh)2(CH3)(pyridine)]. J. Organomet. Chem. 414, 245–259 (1991)CrossRefGoogle Scholar
  27. 27.
    Lopez, C., Alvarez, S., Solans, X., Font-Bardia, M.: The influence of equatorial bulky substituents on the properties of organometallic bis(dioximato)cobalt(III) compounds—structural comparison between trans-[Co(dpgh)2(R)(L)] complexes [dpgh = diphenylglyoximato(-1)] and other B-12 models. Polyhedron 11, 1637–1646 (1992)CrossRefGoogle Scholar
  28. 28.
    Gupta, B.D., Qanungo, K., Yamuna, R., Pandey, A., Tewari, U., Vijaikanth, V., Singh, V., Barclay, T., Cordes, W.: Synthesis, characterization and cistrans influence in cobaloximes with nioxime. J. Organomet. Chem. 608, 106–114 (2000)CrossRefGoogle Scholar
  29. 29.
    Adkhis, A., Djebbar, S., Banali-Baitich, O., Kadri, A., Khan, M.A., Bouet, G.: Synthesis, characterization, and electrochemical behavoir of mixed-ligand complexes of cobalt(III) with dimethylglyoxime and some amino acids. Synth. React. Inorg. Met. Org. Chem. 33, 35–50 (2003)Google Scholar
  30. 30.
    Shauib, N.M., Elassar, A.Z.A., El-Dissouky, A.: Synthesis and spectroscopic characterization of copper(II) complexes with the polydentate chelating ligand 4,4′-[1,4-phenylenedi(nitrilo)dipente-2-one. Spectrochim. Acta, Part A 63, 714–722 (2006)Google Scholar
  31. 31.
    Karipcin, F., Dede, B., Percin-Ozkorucuklu, S., Kabalcılar, E.: Mn(II), Co(II) and Ni(II) complexes of 4-(2-thiazolylazo)resorcinol: syntheses, characterization, catalase-like activity, thermal and electrochemical behaviour. Dyes Pigments 84, 14–18 (2010)CrossRefGoogle Scholar
  32. 32.
    Dede, B., Ozmen, I., Karipcin, F., Cengiz, M.: Homo- and heteropolynuclear copper(II) complexes containing a new diimine-dioxime ligand and 1,10-phenanthroline: synthesis, characterization, solvent-extraction studies, catalase-like functions and DNA cleavage abilities. Appl. Organomet. Chem. 23, 512–519 (2009)CrossRefGoogle Scholar
  33. 33.
    Kılıc, A., Tas, E., Yilmaz, I.: Synthesis, spectroscopic and redox properties of the mononuclear Niıı, Niıı(Bph2)2 containing (B–C) bond and trinuclear Cuıı–Niıı–Cuıı type-metal complexes of N,N′-(4-amino-1-benzyl piperidine)-glyoxime. J. Chem. Sci. 121, 43–56 (2009)CrossRefGoogle Scholar
  34. 34.
    Verani, C.N., Rentschler, E., Weyhermuller, T., Bill, E., Chaudhuri, P.: On the rational synthesis and properties of exchange-coupled heterotrinuclear systems containing [MAMBMB] and [MAMBMC] cores. Chem. Soc. Dalton. Trans.23, 4263–4271 (2000)Google Scholar
  35. 35.
    Karipcin, F., Arabali, F., Karataş, I.: Synthesis and characterization of 4-(alkylaminoisonitrosoacetyl)biphenyls and their complexes. Russ. J. Coord. Chem. 32, 109–115 (2006)CrossRefGoogle Scholar
  36. 36.
    Karipcin, F., Arabali, F., Karatas, I.: Synthesis and characterization of 4-arylaminobiphenylglyoximes and their complexes. J. Chil. Chem. Soc. 51, 982–985 (2006)CrossRefGoogle Scholar
  37. 37.
    Karipcin, F., Erdem-Tuncmen, M., Baskale-Akdogan, G., Dede, B.: Synthesis and characterization of some borylated (4-biphenyl)(N-arylamino)glyoxime complexes. Pol J. Chem. 83, 525–535 (2009)Google Scholar
  38. 38.
    Yamazaki, N., Hohokabe, Y.: Studies on cobaloximes and investigation on their infrared and far-infrared spectra. Bull. Chem. Soc. Japan 44, 63–69 (1971)CrossRefGoogle Scholar
  39. 39.
    Burger, K., Ruff, I., Ruff, F.: Infrared and ultra-violet spectrophotometric study of the dimethylglyoxime complex of transition metals. J. Inorg. Nucl. Chem. 27, 179–190 (1965)CrossRefGoogle Scholar
  40. 40.
    Nakamato, K.: Infrared spectra of inorganic and coordination compounds. Wiley, New York (1963)Google Scholar
  41. 41.
    Schrauzer, G.N., Windgassen, R.J.: Alkylcobaloximes and their relation to alkylcobalamins. J. Am. Chem. Soc. 88, 3738–3743 (1966)CrossRefGoogle Scholar
  42. 42.
    Gradinaru, J., Malinovskii, S., Gdaniec, M., Zecchin, S.: Trinuclear tris-Co(II) and trans-cobaloxime type Co(III) complexes prepared from Co(II) triflate precursor: synthesis, structure and properties. Polyhedron 25, 3417–3426 (2006)CrossRefGoogle Scholar
  43. 43.
    Bilgin, A., Ertem, B., Agın, F.D., Gok, Y., Karslıoglu, S.: Synthesis, characterization and extraction studies of a new vic-dioxime and its complexes containing bis(diazacrown ether) moieties. Polyhedron 25, 3165–3172 (2006)CrossRefGoogle Scholar
  44. 44.
    Karipcin, F., Ilican, S., Caglar, Y., Caglar, M., Dede, B., Şahin, Y.: Synthesis, structural and optical properties of novel borylated Cu(II) and Co(II) metal complexes of 4-benzylaminobiphenylglyoxime. J. Organomet. Chem. 692, 2473–2481 (2007)CrossRefGoogle Scholar
  45. 45.
    Uysal, S., Coskun, A., Koc, Z.E., Ucan, H.I.: Synthesis and characterization of a new dioxime and its heterotrinuclear BF2 + capped complexes. J. Macromol. Sci. 45, 727–732 (2008)CrossRefGoogle Scholar
  46. 46.
    Hathaway, B. J., Underhill, A. E.: The infrared spectra ofsome transition-metal perchlorates. J. Chem. Soc. 1961, 3091–3096 (1961)Google Scholar
  47. 47.
    Zhang, S.W., Yan, S.P., Liao, D.Z., Jiang, Z.H., Wang, G.L.: Synthesis and magnetic properties of trinuclear nickel(II) complexes bridged by alpha-benzyldioximato groups. Transit. Met. Chem. 22, 42–45 (1997)CrossRefGoogle Scholar
  48. 48.
    Toscano, P.J., Lettko, L., Schermerhorn, E.J., Waechter, J., Shufon, K., Liu, S., Dikarev, E.V., Zubieta, J.: Synthesis and characterization of diphenylglyoximato cobalt(III) complexes. The molecular structures of trans-bis(diphenylglyoximato)(alkyl)(pyridine)cobalt(III), with alkyl = CH2SiMe3, CH2CMe3 and CF3. Polyhedron 22, 2809–2820 (2003)CrossRefGoogle Scholar
  49. 49.
    Gupta, B.D., Singh, V., Yamuna, R., Barclay, V., Cordes, W.: Organocobaloximes with mixed dioxime equatorial ligands: a convenient one-pot synthesis. X-ray structures and cis-trans influence studies. Organometallics 22, 2670–2678 (2003)CrossRefGoogle Scholar
  50. 50.
    Luo, L.B., Chen, H.L., Wang, F., Dai, Q.P., Tang, W.X.: Thermolysis of beta-cyclodextrin/alkylcobaloxime inclusion complexes in the solid state. Thermochim. Acta 298, 129–134 (1997)CrossRefGoogle Scholar
  51. 51.
    Brown, T.M., Dronsfield, A.T., Fowler, J.H., Hill, S.W.: The thermal decomposition of alkyl cobaloximes: a correction to the literature. Inorg. Chim. Acta 299, 277–283 (2000)CrossRefGoogle Scholar
  52. 52.
    Brown, K.L., Jang, G.W., Segal, R., Rajeshwar, K.: Thermolysis of alkyl(aquo)cobaloximes and alkyl(pyridine)cobaloximes in the solid-state—influence of the alkyl group on axial cobalt ligand bond stability and correlation with solution properties. Inorg. Chim. Acta 128, 197–205 (1987)CrossRefGoogle Scholar
  53. 53.
    Moore, S.J., Kutikov, A., Lachicotte, R.J., Marzilli, L.G.: Methyl B12 models containing unsubstituted imidazole as an axial ligand investigated by structural and NMR spectroscopic methods. Evidence that í-imidazolato-bridged dimers are formed by base addition to some analogues with macrocyclic equatorial ligands incorporating BF2. Inorg. Chem. 38, 768–776 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Sciences and Arts FacultySüleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Chemistry, Sciences and Arts FacultyNevsehir UniversityNevsehirTurkey

Personalised recommendations