Advertisement

Anthraquinone coupled benzothiazole-based receptor for selective sensing of Cu2+

  • Kumaresh GhoshEmail author
  • Debasis Kar
Original Article

Abstract

A new and an easy-to-make simple anthraquinone-based molecular receptor 1 has been synthesized and its metal ion binding properties have been studied in CH3CN containing 0.01 % DMSO. The receptor site comprised of benzothiazole units is capable of selective sensing of Cu2+ ion over a series of other metal ions by exhibiting fluorescence quenching to a greater extent (~78 %). The receptor is also workable in aq. CH3CN (CH3CN:H2O = 4:1, v/v) and shows moderate binding of Cu2+ by exhibiting 62 % quenching of emission. In addition, the change in color of the receptor solution in polar organic solvent (e.g., DMSO) upon addition of Cu2+ at the concentration range ~10−3 M is worthwhile for the selective detection of Cu2+ ion by ‘naked eye’.

Graphical abstract

Keywords

Anthraquinone-based sensor Benzothiazole binding site Copper ion recognition Fluorescence quenching 

Notes

Acknowledgments

The authors thank DST, Government of India for providing facilities in the department under FIST program. DK thanks CSIR, New Delhi, India for a fellowship.

Supplementary material

10847_2012_217_MOESM1_ESM.doc (2.8 mb)
Figures showing the change in absorption and fluorescence spectra of receptor 1, Binding constant curves and titration curve for 1 with Cu2+, MO’s of 1, Time resolved fluorescence are available (DOC 2896 kb)

References

  1. 1.
    Bissel, R.A., de Silva, A.P., Gunaratne, H.Q.N., Lynch, P.L.M., Maguire, G.E.M., Sandanayake, K.R.A.S.: Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev. 21, 187–195 (1992)CrossRefGoogle Scholar
  2. 2.
    Desvergue, J.P., Czarnik, A.-W. (eds.) Fluorescent Chemosensors for Ion and Molecular Recognition. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  3. 3.
    Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)CrossRefGoogle Scholar
  4. 4.
    Xu, Z., Yoon, J., Spring, D.R.: Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 139, 1996–2006 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, J.W., Jung, H.S., Kwon, P.S., Kim, J.W., Bartsch, R.A., Kim, Y., Kim, S.J., Kim, J.S.: Chromofluorescent indicator for intracellular Zn2+/Hg2+ dynamic exchange. Org. Lett. 10, 3801–3804 (2008)CrossRefGoogle Scholar
  6. 6.
    Kim, H.J., Park, Y.S., Yoon, S., Kim, J.S.: FRET-derived ratiometric fluorescence sensor for Cu2+. Tetrahedron 64, 1294–1300 (2008)CrossRefGoogle Scholar
  7. 7.
    Kaur, S., Kumar, S.: Photoactive chemosensors: a unique case of fluorescence enhancement with Cu(II). Chem. Commun. 23, 2840–2841 (2002)CrossRefGoogle Scholar
  8. 8.
    Chandrasekhar, V., Bag, P., Pandey, M.D.: Phosphorus-supported multidentatecoumarin-containing fluorescence sensors for Cu2+. Tetrahedron 65, 9876–9883 (2009)CrossRefGoogle Scholar
  9. 9.
    Park, S.M., Kim, M.H., Choe, J.–I., No, K.T., Chang, S.–K.: Cyclams bearing diametrically disubstituted pyrenes as Cu2+- and Hg2+-selective fluoroionophores. J. Org. Chem. 72, 3550–3553 (2007)CrossRefGoogle Scholar
  10. 10.
    Xiang, Y., Tong, A., Jin, P., Ju, Y.: New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org. Lett. 8, 2863–2866 (2006)CrossRefGoogle Scholar
  11. 11.
    Jung, H.S., Park, M., Han, D.Y., Kim, E., Lee, C., Ham, S., Kim, J.S.: Cu2+ Ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org. Lett. 11, 3378–3381 (2009)CrossRefGoogle Scholar
  12. 12.
    Zheng, Y., Gattás-Asfura, K.M., Konka, V., Leblance, R.M.: A dansylated peptide for the selective detection of copper ions. Chem. Commun. 20, 2350–2351 (2002)CrossRefGoogle Scholar
  13. 13.
    Kim, S.H., Kim, J.S., Park, S.M., Chang, S.-K.: Hg2+-selective OFF-ON and Cu2+-selective ON–OFF type fluoroionophore based upon cyclam. Org. Lett. 8, 371–374 (2006)CrossRefGoogle Scholar
  14. 14.
    Qi, X., Jun, E.J., Xu, L., Kim, S.-J., Hong, J.S.J., Yoon, Y.J., Yoon, J.: New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J. Org. Chem. 71, 2881–2884 (2006)CrossRefGoogle Scholar
  15. 15.
    Xu, Z., Xiao, Y., Qian, X., Cui, J., Cui, D.: Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett. 7, 889–892 (2005)CrossRefGoogle Scholar
  16. 16.
    Jung, H.S., Kwon, P.S., Lee, J.W., Kim, J.I., Hong, C.S., Kim, J.W., Yan, S., Lee, J.Y., Lee, J.H., Joo, T., Kim, J.S.: Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 131, 2008–2012 (2009). and references cited thereinCrossRefGoogle Scholar
  17. 17.
    Ghosh, K., Sen, T.: Anthracene coupled adenine for the selective sensing of copper ions. Beilstein J. Org. Chem. 6(44) (2010)Google Scholar
  18. 18.
    Gunnlaugsson, T., Leonard, J.P., Murray, N.S.: Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett. 6, 1557–1560 (2004)CrossRefGoogle Scholar
  19. 19.
    Swamy, K.M.K., Ko, S.K., Kwon, S.K., Lee, H.N., Mao, C., Kim, J.–.M., Lee, K.–.H., Kim, J., Shin, I., Yoon, J.: Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem. Commun. 45, 5915–5917 (2008)CrossRefGoogle Scholar
  20. 20.
    Banthia, S., Samanta, A.: Photophysical and transition-metal ion signaling behavior of a three-component system comprising a cryptand moiety as the receptor. J. Phys. Chem. B 106, 5572–5577 (2002)CrossRefGoogle Scholar
  21. 21.
    Ramachandram, B., Samanta, A.: Modulation of metal–fluorophore communication to develop structurally simple fluorescent sensors for transition metal ions. Chem. Commun. 11, 1037–1038 (1997)CrossRefGoogle Scholar
  22. 22.
    Rurack, K.: Flipping the light switch ‘ON’—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A 57, 2161–2195 (2001)CrossRefGoogle Scholar
  23. 23.
    Ghosh, P., Bharadwaj, P.K., Mandal, S., Sanjib, G.: Ni(II), Cu(II), and Zn(II) cryptate-enhanced fluorescence of a trianthryl cryptand: a potential molecular photonic or operator. J. Am. Chem. Soc. 118, 1553–1554 (1996)CrossRefGoogle Scholar
  24. 24.
    Yu, C., Zhang, J., Wang, R., Chen, L.: Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu2+ based on rhodamine derivative Org. Biomol. Chem. 8, 5277–5279 (2010)CrossRefGoogle Scholar
  25. 25.
    Khatua, S., Choi, S.H., Lee, J., Huh, J.O., Do, Y., Churchill, D.G.: Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg. Chem. 48, 1799–1801 (2009). and references cited thereinCrossRefGoogle Scholar
  26. 26.
    Ghosh, K., Sarkar, T.: Selective sensing of Cu (II) by a simple anthracene-based tripodal chemosensor. Supramol. Chem. 23, 435–440 (2011)CrossRefGoogle Scholar
  27. 27.
    Goswami, S., Sen, D., Das, N.K.: A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org. Lett. 12, 856–859 (2010)CrossRefGoogle Scholar
  28. 28.
    Goswami, S., Chakraborty, R.: Fluorescence sensing of Cu2+ within a pseudo 18-crown-6 cavity. Tetrahedron Lett. 50, 5910–5913 (2009)CrossRefGoogle Scholar
  29. 29.
    Muthaup, G., Schlicksupp, A., Hess, L., Beher, D., Ruppert, T., Masters, C.L., Beyreuther, K.: The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271, 1406–1409 (1996)CrossRefGoogle Scholar
  30. 30.
    Løvstad, R.A.: A kinetic study on the distribution of Cu(II)-ions between albumin and transferring. Bio Metals. 17, 111–113 (2004)Google Scholar
  31. 31.
    Barceloux, D.G.: Copper. J. Toxicol. Clin. Toxicol 37(2), 217–230 (1999)Google Scholar
  32. 32.
    Sarkar, B.: In: Siegel, H., Siegel, A. (eds.) Metal Ions in Biological Systems, vol. 12, p. 233. Marcel Dekker, New York (1981)Google Scholar
  33. 33.
    Que, E.L., Domaille, D.W., Chang, C.J.: Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008)CrossRefGoogle Scholar
  34. 34.
    NisarAhamed, B., Ravikumar, I., Ghosh, P.: A new chemosensor that signals Hg(II), Cu(II) and Zn(II) at different emission wavelengths: selectivity toward Hg(II) in acetonitrile. New J. Chem. 33, 1825–1828 (2009)CrossRefGoogle Scholar
  35. 35.
    Kim, H.J., Hong, J., Hong, A., Ham, S., Lee, J.H., Kim, J.S.: Cu2+-induced intermolecular static excimer formation of pyrenealkylamine. Org. Lett. 10, 1963–1966 (2008)CrossRefGoogle Scholar
  36. 36.
    Weng, Y.-Q., Yue, F., Zhong, Y.-R., Ye, B.-H.: A copper(II) ion-selective on–off type fluoroionophore based on zinc porphyrin-dipyridylamino. Inorg. Chem. 46, 7749–7755 (2007)CrossRefGoogle Scholar
  37. 37.
    Martinez, R., Zapata, F., Caballero, A., Espinosa, A., Tarraga, A., Molina, P.: 2-Aza-1,3-butadiene d derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org. Lett. 8, 3235–3238 (2006)CrossRefGoogle Scholar
  38. 38.
    Fabbrizzi, L., Licchelli, M., Pallavicini, P., Perotti, A., Taglietti, A., Sacchi, D.: Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chem. Eur. J. 2, 75–82 (1996)CrossRefGoogle Scholar
  39. 39.
    Choi, J.K., Kim, S.H., Yoon, J., Lee, K.H., Bartsch, R.A., Kim, J.S.: A PCT-Based, pyrene-armed calix[4]crown fluoroionophore. J. Org. Chem. 71, 8011–8015 (2006). and references cited thereinCrossRefGoogle Scholar
  40. 40.
    Kaur, S., Kumar, S.: Photoactive chemosensors 4: a Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition. Tetrahedron Lett. 45, 5081–5085 (2004)CrossRefGoogle Scholar
  41. 41.
    Gaussian 09: Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, Jr., T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian, Inc., Wallingford (2004)Google Scholar
  42. 42.
    Valeur, B., Pouget, J., Bourson, J., Kaschke, M., Eensting, N.P.: Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J. Phys. Chem. 96, 6545–6549 (1992)CrossRefGoogle Scholar
  43. 43.
    Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)Google Scholar
  44. 44.
    Blankespoor, R.L., Lau, A.N.K., Miller, L.L.: Electroreductive cleavage of 2-methylene-9,10-anthraquinone (Maq) esters of carboxylic acids and N-substituted carbamic acids: protecting groups for carboxylic acids and primary amines. J. Org. Chem. 49, 4441–4446 (1984)CrossRefGoogle Scholar
  45. 45.
    Brooks, S.J., Birkin, P.R., Gale, P.A.: Electrochemical measurement of switchable hydrogen bonding in an anthraquinone-based anion receptor. Electrochem. Commun. 7, 1351–1356 (2005)CrossRefGoogle Scholar
  46. 46.
    Ryu, B.J., Cho, E.J., Nam, K.C.: Synthesis and metal binding properties of anthraquinone bridged with coumarin. Bull. Korean Chem. Soc. 28, 1585–1587 (2007)CrossRefGoogle Scholar
  47. 47.
    Devaraj, S., Saravankumar, S., Kandaswamy, M.: Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions. Tetrahedron Lett. 48, 3077–3081 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations