Skip to main content
Log in

Calix[4]crown-5-ether as a biolinker for immobilization of protein and DNA in fluorescence glass slide chip

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Binding affinity between calix[4]crown-5-ether and amino acids have been compared by studying the complexation association constant, and the best value has been obtained from complex of calix[4]crown-5 ether, and HrSOD tagged with Arg and Lys were tested to investigate the effects of specific residues in protein immobilization on calix[4]crown-5-ether. The protein tagged with 9Args has been shown to have much better immobilization potential. Taking advantage of the similar structure of a moiety of guanine base to that of Arg side chain, different homo-oligonucleotides have been immobilized, and it was found that calix[4]crown-5-ether is an appropriate agent in the immobilization of dGTP homo-oligonucleotides. The results demonstrate that calix[4]crown-5-ether on glass slide chip could be applied as an excellently oriented immobilization agent for protein or for DNA microarray designing. It has the ability of single base differentiation in SNP sequence detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Arg:

Arginine

Lys:

Lysine

G:

Guanine nucleotide

hrSOD:

Human recombinant superoxide dismutase

PBST:

PBS-Tween 20

SNP:

Single nucleotide polymorphism

SSC:

Sodium citrate

References

  1. Jain, K.K.: Biochips for gene spotting. Science 294, 621–623 (2002)

    Article  Google Scholar 

  2. Templin, M., Stoll, D., Schrenk, M., Traub, P.C., Vöhringer, C.F., Joos, T.O.: Protein microarray technology. Trends Biotechnol. 20, 160–166 (2002)

    Article  CAS  Google Scholar 

  3. Abbort, A.: A post-genomic challenge: learning to read patterns of protein synthesis. Nature 402, 715–720 (1999)

    Article  Google Scholar 

  4. Anderson, K.S., Ramachandran, N., Wong, J., Raphael, J.V., Hainsworth, E., Demirkan, G., Cramer, D., Aronzon, D., Hodi, F.S., Harris, L., Logvinenko, T., LaBaer, J.: Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome. Res. 7, 1490–1499 (2008)

    Article  CAS  Google Scholar 

  5. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., Walter, G.: Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111 (1999)

    Article  CAS  Google Scholar 

  6. Jain, K.K.: Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002–2009 (2007)

    Article  CAS  Google Scholar 

  7. Blohm, D.H., Guiseppi-Elie, A.: New developments in microarray technology. Curr. Opin. Biotechnol. 12, 41–47 (2001)

    Article  CAS  Google Scholar 

  8. Turkova, J.: Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatography B 722, 11–31 (1999)

    Article  CAS  Google Scholar 

  9. Høyer-Hansen, G., Hamers, M.J., Pedersen, A.N., Nielsen, H.J., Brünner, N., Danø, K., Stephens, R.W.: Loss of ELISA specificity due to biotinylation of monoclonal antibodies. J. Immunol. Methods 235, 91–99 (2000)

    Article  Google Scholar 

  10. Nakagawa, T., Tanaka, T., Niwa, D., Osaka, T., Takeyama, H., Matsunaga, T.: Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J. Biotechnol. 116, 105–111 (2005)

    Article  CAS  Google Scholar 

  11. Taylor, S., Smith, S., Windle, B., Guiseppi-Elie, A.: Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res. 31, e87 (2003)

    Article  Google Scholar 

  12. MacBeath, G., Schreiber, S.L.: Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)

    CAS  Google Scholar 

  13. Coleman, A.W., Perret, F., Moussa, A., Dupin, M., Guo, Y., Perron, H.: Calix[n]arenes as protein sensors. Top. Curr. Chem. 277, 31–88 (2007)

    Article  CAS  Google Scholar 

  14. Mutihac, L., Mutihac, R.: Liquid–liquid extraction and transport through membrane of amino acid methylesters by calix[n]arene derivatives. J. Incl. Phenom. Macrocycl. Chem. 59(1–2), 177–181 (2007)

    Article  CAS  Google Scholar 

  15. Mutihac, L., Hong Lee, J., Seung Kim, J., Vicens, J.: Recognition of amino acids by functionalized calixarenes. Chem. Soc. Rev. 40, 2777–2796 (2011)

    Article  CAS  Google Scholar 

  16. Bew, S.P., Barter, A.W.J., Sharma, S.V.: Mass spectroscopic investigation of bis-1,3-urea calix[4]arenes and their ability to complex N-protected α-amino acids. J. Incl. Phenom. Macrocycl. Chem. 66(1–2), 195–208 (2010)

    Article  CAS  Google Scholar 

  17. Oshima, T., Saisho, R., Ohe, K., Baba, Y., Ohto, K.: Adsorption of amino acid derivatives on calixarene carboxylic acid impregnated resins. React. Funct. Polym. 69, 105–110 (2009)

    Article  CAS  Google Scholar 

  18. Perret, F., Coleman, W.: Biochemistry of anionic calix[n]arenes, Chem. Commun. (Camb.), 47(26), 7303–7319 (2011)

    Article  CAS  Google Scholar 

  19. Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T.S., Park, J., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19, 1335–1337 (2005)

    CAS  Google Scholar 

  20. Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.C., Kim, T.S., Han, M.H.: ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein–protein interaction studies. Proteomics 3, 2289–2304 (2003)

    Article  CAS  Google Scholar 

  21. Amiri, A., Yul Choi, E., Jeong Kim, H.: Development and molecular recognition of Calixcrownchip as an electrochemical ALT immunosensor. J. Incl. Phenom. Macrocycl. Chem. 66, 185–195 (2010)

    Article  CAS  Google Scholar 

  22. de Namor, A.F.D., Gil, E., Llosa Tanco, M.A., Tanaka, D.A.P., Salazar, L.E.P., Sculz, R.A., Wang, J.: J. Phys. Chem. 99, 16776–16781 (1995)

    Article  Google Scholar 

  23. Philip, T., Fraisse, J., Sinet, P.M., Lauras, B., Robert, J.M., Freycon, F.: Confirmation of the assignment of the human SOD gene to chromosome 21q22 Cytogenetics. Cell Genet. 22, 521–523 (1978)

    Article  CAS  Google Scholar 

  24. Martoglio, B., Graf, R., Dobberstein, B.: Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. EMBO J. 16, 6636–6645 (1997)

    Article  CAS  Google Scholar 

  25. Romkes, M., Faletto, M.B., Blaisdell, J.A., Raucy, J.L., Goldstein, J.A.: Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30, 3247–3255 (1991)

    Article  CAS  Google Scholar 

  26. Gutsche, C.D.: Calixarene Revisited: Monographs in Supramolecular Chemistry. Royal Society of Chemistry, Cambridge (1998)

    Google Scholar 

  27. Mandolini, L., Ungaro, R.: Calixarenes in Action. Imperial College press, London (2000)

    Book  Google Scholar 

  28. Miyamoto, S., Kollman, P.A.: Molecular dynamics studies of calixspherand complexes with alkali metal cations: calculation of the absolute and relative free energies of binding of cations to a calixspherand. J. Am. Chem. Soc. 114, 3668–3674 (1992)

    Article  CAS  Google Scholar 

  29. Ramirez, J., Ahn, S., Grogorean, G., Lebrilla, C.B.: Evidence for the formation of gas-phase inclusion complexes with cyclodextrins and amino acids. J. Am. Chem. Soc. 122, 6884–6890 (2000)

    Article  CAS  Google Scholar 

  30. Cheng, Y., Hercules, D.M.: Measurement of chiral complexes of cyclodextrins and amino acids by electrospray ionization time-of-flight mass spectrometry. J. Mass Spectrom. 36, 834–836 (2001)

    Article  CAS  Google Scholar 

  31. Stone, M.M., Franz, H.F., Lebrilla, C.B.: Non-covalent calixarene–amino acid complexes formed by MALDI-MS. J. Am. Soc. Mass Spectrom. 13, 964–974 (2002)

    Article  CAS  Google Scholar 

  32. Oshima, T., Goto, M., Furusaki, S.: Complex formation of cytochrome c with a calixarene carboxylic acid derivatives: a novel solubilization method for biomolecules in organic media. Biomacromolecules 3, 438–444 (2002)

    Article  CAS  Google Scholar 

  33. Lin, Q., Park, H.S., Hamuro, Y., Lee, C.S., Hamilton, A.D.: Protein surface recognition by synthetic agents: design and structural requirements of a family of artificial receptors that bind to cytochrome c. Biopolymers 47, 285–297 (1998)

    Article  CAS  Google Scholar 

  34. Sato, H., Feix, J.B., Frank, D.W.: Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemstry 45, 10368–10375 (2006)

    Article  CAS  Google Scholar 

  35. Kudo, Y., Maeda, S., Tikida, S., Kudo, M.: Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996)

    Article  Google Scholar 

  36. Marston, F.A., Hartley, D.L.: Solubilization of protein aggregates. Methods Enzymol. 182, 264–276 (1990)

    Article  CAS  Google Scholar 

  37. Hiller, R., Laffer, S., Harwanegg, C., Huber, M., et al.: Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 16, 414–416 (2002)

    CAS  Google Scholar 

  38. Busse, P.J., Järvinen, K.M., Vila, L., Beyer, K., Sampson, H.A.: Identification of sequential IgE-binding epitopes on bovine alpha (s2)-casein in cow’s milk allergic patients. Int. Arch. Allergy Immunol. 129, 93–96 (2002)

    Article  CAS  Google Scholar 

  39. Sasakura, Y., Kanda, K., Yoshimura-Suzuki, T., Matsui, T., Fukuzono, S., Han, M.H., Shimizu, T.: Protein microarray system for detecting protein–protein interactions using an anti-His-tag antibody and fluorescence scanning: effects of the heme redox state on protein–protein interactions of heme-regulated phosphodiesterase from Escherichia coli. Anal. Chem. 76, 6521–6527 (2004)

    Article  CAS  Google Scholar 

  40. Büssow, K., Nordhoff, E., Lubbert, C., Leharch, H., Walter, G.: A human cDNA library for high-throughput protein expression screening. Genomics 65, 1–8 (2000)

    Article  Google Scholar 

  41. Sansone, F., Dudic, M., Donofrio, G., Rivetti, C., Baldini, L., Casnati, A., Cellai, S., Ungaro, R.: DNA condensation and cell transfection properties of guanidinium calixarenes: dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc. 128, 14528–14536 (2006)

    Article  CAS  Google Scholar 

  42. Schug, K.A., Lindner, W.: Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem. Rev. 105, 67–114 (2005)

    Article  CAS  Google Scholar 

  43. Perreault, D.M., Cabell, L.A., Anslyn, E.V.: Using guanidinium groups for the recognition of RNA and as catalysts for the hydrolysis of RNA. Bioorg. Med. Chem. 5, 1209–1220 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Amiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiri, A., Choi, E.Y. Calix[4]crown-5-ether as a biolinker for immobilization of protein and DNA in fluorescence glass slide chip. J Incl Phenom Macrocycl Chem 76, 317–326 (2013). https://doi.org/10.1007/s10847-012-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0201-1

Keywords

Navigation