Skip to main content
Log in

A new benzimidazolium incorporated chemodosimeter affording dual chromogenic and fluorescence switch-on signaling for the selective targeting of cyanide

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We have designed and synthesized a new chemodosimeter, Benzolin-A, which selectively responds to toxic cyanide by dual colorimetric and fluorescence turn-on responses in buffered aqueous DMSO. In the presence of cyanide, we observe absorbance red shift of 108 nm (color changing from colorless to yellow) and fivefold fluorescence enhancement. The 1H NMR studies confirm the nucleophilic addition mechanism, and consistent with the experimental findings, the computational work predicts the feasibility of photoelectron transfer or energy transfer process in the native probe, as well as enhanced internal charge transfer in the Benzolin-A-cyanide adduct. Noteworthily, several background anions, such as F, Cl, AcO, SCN, HSO4 , NO3 , Br, I and H2PO4 exhibit none or insignificant optical perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Desvergne, J.P., Czarnik, A.W.: Chemosensors of Ion and Molecule Recognition. Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  2. De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  3. Gunnlaugsson, T., Glynn, M., Tocci, G.M., Kruger, P.E., Pfeffer, F.M.: Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev. 250, 3094–3117 (2006)

    Article  CAS  Google Scholar 

  4. Manez, R.M., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  Google Scholar 

  5. Sessler, J.L., Seidel, D.: Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. 42, 5134–5175 (2003)

    Article  CAS  Google Scholar 

  6. Gale, P.A.: Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord. Chem. Rev. 240, 191–221 (2003)

    Article  CAS  Google Scholar 

  7. Suksai, C., Tuntulani, T.: Chromogenic anion sensors. Chem. Soc. Rev. 32, 192–202 (2003)

    Article  CAS  Google Scholar 

  8. Warburg, O.: Inhibition of the action of prussic acid in living cells. Hoppe-Seyler’s Z. Physiol. Chem. 76, 331–346 (1911)

    Article  Google Scholar 

  9. Kulig, K.W.: Cyanide Toxicity. U.S. Department of Health and Human Services, Atlanta (1991)

    Google Scholar 

  10. Young, C., Tidwell, L.G., Anderson, C.: Cyanide: social, industrial, and economic aspects. Minerals, Metals, and Materials Society, Warrendale (2001)

  11. Arpe, H.-J. (ed.): Ullmann’s Encyclopedia of Industrial Chemistry, Wiley–VCH, New York (1999)

  12. Horton, N.C., Perona, J.J.: DNA Cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Biochemistry 43, 6841–6857 (2004)

    Article  CAS  Google Scholar 

  13. Guidelines for Drinking-Water Quality, World Health Organization, Geneva (1996)

  14. Xu, Z., Chen, X., Kim, H.N., Yoon, J.: Sensors for the optical detection of cyanide ion. Chem. Soc. Rev. 39, 127–137 (2010)

    Article  CAS  Google Scholar 

  15. Cho, D.G., Sessler, J.L.: Modern reaction-based indicator systems. Chem. Soc. Rev. 38, 1647–1662 (2009)

    Article  CAS  Google Scholar 

  16. Mohr, G.J.: New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Anal. Bioanal. Chem. 386, 1201–1214 (2006)

    Article  CAS  Google Scholar 

  17. Vanderleia, G., Zimmermann, L.M., Machado, V.G.: Analytical assays based on chromogenic and fluorogenic chemosensors for the detection of cyanide. Orbital Electron. J. Chem. 2, 53–91 (2010)

    Google Scholar 

  18. Yilmaz, M.D., Akkaya, E.U.: A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org. Lett. 10, 461–464 (2008)

    Article  Google Scholar 

  19. Miyaji, H., Sessler, J.L.: Off-the-shelf colorimetric anion sensors. Angew. Chem. Int. Ed. Engl. 40, 154–157 (2001)

    Article  CAS  Google Scholar 

  20. Lee, K.S., Kim, H.J., Kim, G.H., Shin, I., Hong, J.I.: Fluorescent chemodosimeter for selective detection of cyanide in water. Org. Lett. 10, 49–51 (2008)

    Article  CAS  Google Scholar 

  21. Chung, Y.M., Raman, B., Kim, D.S., Ahn, K.H.: Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chem. Commun. 2, 186–188 (2006)

    Article  Google Scholar 

  22. Tomasulo, M., Sortino, S., White, A.J.P., Raymo, F.M.J.: Chromogenic oxazines for cyanide detection. Org. Chem. 71, 744–753 (2006)

    Article  CAS  Google Scholar 

  23. Chung, Y., Lee, H., Ahn, K.H.: N-acyl triazenes as tunable and selective chemodosimeters toward cyanide ion. J. Org. Chem. 71, 9470–9474 (2006)

    Article  CAS  Google Scholar 

  24. Chen, C.L., Chen, Y.H., Chen, C.Y., Sun, S.S.: Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion. Org. Lett. 8, 5053–5056 (2006)

    Article  CAS  Google Scholar 

  25. Tomasulo, M., Raymo, F.M.: Colorimetric detection of cyanide with a chromogenic oxazine. Org. Lett. 7, 4633–4636 (2005)

    Article  CAS  Google Scholar 

  26. Garcia, F., Garcia, J.M., Garcia, A.B., Manez, R.M., Sancenon, F., Soto, J.: Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chem. Commun. 22, 2790–2792 (2005)

    Article  Google Scholar 

  27. Ros-Lis, J.V., Manez, R.M., Soto, J.: A selective chromogenic reagent for cyanide determination. Chem. Commun. 19, 2248–2249 (2002)

    Article  Google Scholar 

  28. Kim, Y.H., Hong, J.I.: Ion pair recognition by Zn–porphyrin/crown ether conjugates: visible sensing of sodium cyanide. Chem. Commun. 5, 512–513 (2002)

    Article  Google Scholar 

  29. Chow, C.F., Lam, M.H.W., Wong, W.Y.: A heterobimetallic ruthenium(II)–copper(II) donor–acceptor complex as a chemodosimetric ensemble for selective cyanide detection. Inorg. Chem. 43, 8387–8393 (2004)

    Article  CAS  Google Scholar 

  30. Chung, S.Y., Nam, S.W., Lim, J., Park, S., Yoon, J.: A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem. Commun. 20, 2866–2868 (2009)

    Article  Google Scholar 

  31. Anzenbacher, P., Tyson, D.S., Jursiikovai, K., Castellano, F.N.: Luminescence lifetime-based sensor for cyanide and related anions. J. Am. Chem. Soc. 124, 6232–6233 (2002)

    Article  CAS  Google Scholar 

  32. Poland, K., Topoglidis, E., Durrant, J.R., Palomares, E.: Optical sensing of cyanide using hybrid biomolecular films. Inorg. Chem. Commun. 9, 1239–1242 (2006)

    Article  CAS  Google Scholar 

  33. Liu, H., Shao, X.B., Jia, M.X., Jiang, X.K., Li, Z.T., Chen, G.J.: Selective recognition of sodium cyanide and potassium cyanide by diaza-crown ether-capped Zn-porphyrin receptors in polar solvents. Tetrahedron 61, 8095–8100 (2005)

    Article  CAS  Google Scholar 

  34. Lee, J.H., Jeong, A.R., Shin, I.S., Kim, H.J., Hong, J.I.: Fluorescence turn-on sensor for cyanide based on a cobalt(II)-coumarinylsalen complex. Org. Lett. 12, 764–767 (2010)

    Article  CAS  Google Scholar 

  35. Liu, Y., Ai, K., Cheng, X., Huo, L., Lu, L.: Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 20, 951–956 (2010)

    Article  CAS  Google Scholar 

  36. Chen, X., Nam, S.W., Kim, G.H., Song, N., Jeong, Y., Shin, I., Seog, K., Kim, S.K., Kim, J., Park, S., Yoon, J.: A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem. Commun. 46, 8953–8955 (2010)

    Article  CAS  Google Scholar 

  37. Kwon, S.K., Kou, S., Kima, H.N., Chen, X., Hwang, H., Nama, S.W., Kima, S.H., Swamy, K.M.K., Park, S., Yoon, J.: Sensing cyanide ion via fluorescent change and its application to the microfluidic system. Tetrahedron Lett. 49, 4102–4105 (2008)

    Article  CAS  Google Scholar 

  38. Hudnall, T.W., Gabbai, F.P.: Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J. Am. Chem. Soc. 129, 11978–11986 (2007)

    Article  CAS  Google Scholar 

  39. Badugu, R., Lakowicz, J.R., Geddes, C.D.: Anion sensing using quinolinium based boronic acid probes. Curr. Anal. Chem. 1, 157–170 (2005)

    Article  CAS  Google Scholar 

  40. Badugu, R., Lakowicz, J.R., Geddes, C.D.: Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. J. Am. Chem. Soc. 127, 3635–3641 (2005)

    Article  CAS  Google Scholar 

  41. Jamkratoke, M., Ruangpornvisuti, V., Tumcharern, G., Tuntulani, T., Tomapatanaget, B.: A-D-A sensors based on naphthoimidazoledione and boronic acid as turn-on cyanide probes in water. J. Org. Chem. 74, 3919–3922 (2009)

    Article  CAS  Google Scholar 

  42. Yoon, D.W., Hwang, H., Lee, C.H.: Synthesis of a strapped calix[4]pyrrole: structure and anion binding properties. Angew. Chem. Int. Ed. Engl. 41, 1757–1759 (2002)

    Article  CAS  Google Scholar 

  43. Nishiyabu, R., Anzenbacher, J.P.: Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J. Am. Chem. Soc. 127, 8270–8271 (2005)

    Article  CAS  Google Scholar 

  44. Nishiyabu, R., Anzenbacher, J.P.: 1,3-indane-based chromogenic calixpyrroles with push-pull chromophores: synthesis and anion sensing. Org. Lett. 8, 359–362 (2006)

    Article  CAS  Google Scholar 

  45. Niu, H.T., Jiang, X., He, J., Cheng, J.P.: Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water. Tetrahedron Lett. 50, 6668–6671 (2009)

    Article  CAS  Google Scholar 

  46. Kaur, P., Sareen, D., Kaur, S., Singh, K.: An efficacious “naked-eye” selective sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile. Inorg. Chem. Commun. 12, 272–275 (2009)

    Article  CAS  Google Scholar 

  47. Afkhami, A., Sarlak, N.: A novel cyanide sensing phase based on immobilization of methyl violet on a triacetylcellulose membrane. Sens. Actuators, B 122, 437–441 (2007)

    Article  CAS  Google Scholar 

  48. Hong, S.J., Yoo, J., Kim, S.H., Kim, J.S., Yoon, J., Lee, C.H.: β-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion. Chem. Commun. 2, 189–191 (2009)

    Article  Google Scholar 

  49. Lee, H., Chung, Y.M., Ahn, K.H.: Selective fluorescence sensing of cyanide with an o-(carboxamido)trifluoroacetophenone fused with a cyano-1,2-diphenylethylene fluorophore. Tetrahedron Lett. 49, 5544–5547 (2008)

    Article  CAS  Google Scholar 

  50. Miyaji, H., Kim, D.S., Chang, B.Y., Park, E., Park, S.M., Ahn, K.H.: Highly cooperative ion-pair recognition of potassium cyanide using a heteroditopic ferrocene-based crown ether–trifluoroacetylcarboxanilide receptor. Chem. Commun. 6, 753–755 (2008)

    Article  Google Scholar 

  51. Lee, C.H., Na, H.K., Yoon, D.W., Won, D.H., Cho, W.S., Lynch, V.M., Shevchuk, S.V., Sessler, J.L.: Single side strapping: a new approach to fine tuning the anion recognition properties of calix[4]pyrroles. J. Am. Chem. Soc. 125, 7301–7306 (2003)

    Article  CAS  Google Scholar 

  52. Shiraishi, Y., Adachi, K., Itoh, M., Hirai, T.: Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Org. Lett. 11, 3482–3485 (2009)

    Article  CAS  Google Scholar 

  53. Ren, J.Q., Zhu, W.H., Tian, H.: Highly sensitive and selective chemosensor for cyanide. Talanta 75, 760–764 (2008)

    Article  CAS  Google Scholar 

  54. Mashraqui, S.H., Betkar, R., Chandiramani, M., Estarellas, C., Frontera, A.: Design of a dual sensing highly selective cyanide chemodosimeter based on pyridinium ring chemistry. New J. Chem. 35, 57–60 (2011)

    Article  CAS  Google Scholar 

  55. Kumar, S., Kumar, S.: 1-(4-Nitrophenyl)-benzimidazolium-based ratiometric chromogenic probes for cyanide ion. Tetrahedron Lett. 50, 4463–4466 (2009)

    Article  CAS  Google Scholar 

  56. Yang, Y.K., Tae, J.: Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water. Org. Lett. 8, 5721–5723 (2006)

    Article  CAS  Google Scholar 

  57. Grabowski, Z.R., Rotkiewicz, K., Rettig, W.: Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4031 (2003)

    Article  Google Scholar 

  58. Valure, B.: Topics in fluorescence spectroscopy. In: Lakowicz, J.R. (ed.) Probe Design and Chemical Sensing. Plenum, New York (1994)

    Google Scholar 

  59. Kovalchuk, A., Bricks, J.L., Reck, G., Rurack, K., Schulz, B., Szumna, A., Weisshoff, H.: A charge transfer-type fluorescent molecular sensor that “lights up” in the visible upon hydrogen bond-assisted complexation of anions. Chem. Commun. 17, 1946–1947 (2004)

    Article  Google Scholar 

  60. Mashraqui, S.H., Sundaram, S., Khan, T., Bhasikuttan, A.C.: Zn2 + selective luminescent ‘off–on’ probes derived from diaryl oxadiazole and aza-15-crown-5. Tetrahedron 63, 11093–11100 (2007)

    Article  CAS  Google Scholar 

  61. Tanaka, K., Inafuku, K., Chujo, Y.: Environment-responsive upconversion based on dendrimer-supported efficient triplet–triplet annihilation in aqueous media. Chem. Commun. 46, 4378–4380 (2010)

    Article  CAS  Google Scholar 

  62. Mohanty, J., Bhasikuttan, A.C., Nau, W.M., Pal, H.: Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and β-cyclodextrin. J. Phys. Chem. B 110, 5132–5138 (2006)

    Article  CAS  Google Scholar 

  63. Yoon, J., Kim, S.K., Singh, N.J., Kwang, S., Kim, K.S.: Imidazolium receptors for the recognition of anions. Chem. Soc. Rev. 35, 355–360 (2006)

    Article  CAS  Google Scholar 

  64. Mashraqui, S.H., Betkar, R., Chandiramani, M., Quinonero, D., Frontera, A.: A novel fluoride selective optical chemosensor based on internal charge transfer signaling. Tetrahedron Lett. 51, 596–599 (2010)

    Article  CAS  Google Scholar 

  65. Xu, Z., Kim, S.K., Yoon, J.: Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chem. Soc. Rev. 39, 1457–1466 (2010)

    Article  Google Scholar 

  66. Xu, Z., Singh, J., Kim, S.K., Spring, D.R., Kim, S.K., Yoon, J.: Induction-driven stabilization of the anion–p interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-cage receptors. Chem. Eur. J. 17, 1163–1170 (2011)

    Article  CAS  Google Scholar 

  67. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J.: Gaussian 09, Revision B.01. Gaussian Inc., Wallingford (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir H. Mashraqui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2012_198_MOESM1_ESM.doc

Supporting Information: Spectral data of compound 3 and Benzolin-A, H NMR spectra of Benzolin-A without and with added tetra-n-butylammonium cyanide, comparative fluorescence enhancements of Benzolin-A in the presence of various anions are available online. (DOC 886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashraqui, S.H., Betkar, R., Ghorpade, S. et al. A new benzimidazolium incorporated chemodosimeter affording dual chromogenic and fluorescence switch-on signaling for the selective targeting of cyanide. J Incl Phenom Macrocycl Chem 76, 293–300 (2013). https://doi.org/10.1007/s10847-012-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0198-5

Keywords

Navigation