Skip to main content
Log in

Solubility enhancement of isoflavonoids by complexation with acyclic hexadecasaccharides, succinoglycan dimers isolated from Sinorhizobium meliloti

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Sinorhizobium meliloti produces succinoglycan, an acidic exopolysaccharide composed of a monomeric octasaccharide repeating unit with acetyl, succinyl, and pyruvyl groups, in both low- and high-molecular-weight forms. Among the low-molecular-weight succinoglycans, dimers were isolated from S. meliloti and purified using various chromatographic techniques. The dimers were classified as four types (D1, D2, D3, and D4) based on the number of succinyl moieties in their structure. The effect of succinoglycan dimers on the aqueous solubility of isoflavonoids, daidzein and genistein was investigated. The solubility of isoflavonoids increased in the presence of succinoglycan dimers, and the complexation between isoflavonoids and succinoglycan dimers was analyzed by UV–Vis (ultraviolet–visible) and NMR (nuclear magnetic resonance) spectroscopy. In the phase solubility study, succinoglycan dimer D3 was shown to have the highest stability constants (4951 M−1 for daidzein, and 4452 M−1 for genistein) among the four succinoglycan dimers. The morphological structures of daidzein and genistein with D3 were studied using scanning electron microscopy, and X-ray powder diffractometry. The results showed the natures of the complexes significantly different from the free isoflavonoids. Herein, we suggest that the succinoglycan dimers are able to act as effective complexing agents for the isoflavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Finan, T.M., Hirsch, A.M., Leigh, J.A., Johansen, E., Kuldau, G.A., Deegan, S., Walker, G.C., Signer, E.R.: Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40, 869–877 (1985)

    Article  CAS  Google Scholar 

  2. Jansson, P.-E., Kenne, L., Linberg, B., Ljunggren, H., Ruden, U., Svensson, S.: Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Am. Chem. Soc. 99, 3812–3815 (1977)

    Article  CAS  Google Scholar 

  3. Keller, M., Müller, P., Simon, R., Pühler, A.: Rhizobium meliloti genes for exopolysaccharide synthesis and nodule infection located on megaplasmid 2 are actively transcribed during symbiosis. Mol. Plant Microbe Int. 1, 267–274 (1988)

    Article  CAS  Google Scholar 

  4. Battisti, L., Lara, J.C., Leigh, J.A.: Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc. Natl. Acad. Sci. USA 89, 5625–5629 (1992)

    Article  CAS  Google Scholar 

  5. González, J.E., Semino, C.E., Wang, L., Castellano-torres, L.E.: Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 95, 13477–13482 (1998)

    Article  Google Scholar 

  6. Wang, L., Wang, Y., Pellock, B., Walker, G.C.: Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriol. 181, 6788–6796 (1999)

    CAS  Google Scholar 

  7. Kwon, C., Lee, S., Jung, S.: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric behavior of succinoglycan monomers, dimers, and trimers isolated from Sinorhizobium meliloti. Carbohydr. Res. 346, 2308–2314 (2011)

    Article  CAS  Google Scholar 

  8. Kwon, C., Yoo, K.M., Jung, S.: Chiral separation and discrimination of catechin by sinorhizobial octasaccharides in capillary electrophoresis and 13C NMR spectroscopy. Carbohydr. Res. 344, 1347–1351 (2009)

    Article  CAS  Google Scholar 

  9. Kwon, C., Paik, S.R., Jung, S.: Enantiomeric separation of some flavanones using shinorhizobial linear octasaccharides in CE. Electrophoresis 29, 4284–4290 (2008)

    Article  CAS  Google Scholar 

  10. Cho, E., Choi, J.M., Kim, H., Lee, I.-S., Jung, S.: Hydrophobic interactions of succinoglycan dimers isolated from Sinorhizobium meliloti with hydrophobic fluorescence probes, 8-anilino-1-naphthalenesulfonate and 6-p-toluidino-2-naphthalenesulfonate. Bull. Korean Chem. Soc. 32, 4071–4074 (2011)

    Article  CAS  Google Scholar 

  11. Phillips, D.A., Kapulnik, Y.: Plant isoflavonoids, pathogens and symbionts. Trends Microbiol. 3, 58–64 (1995)

    Article  CAS  Google Scholar 

  12. Junghans, H., Dalin, K., Dixon, R.A.: Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol. Biol. 22, 239–253 (1993)

    Article  CAS  Google Scholar 

  13. Oseni, T., Patel, R., Pyle, J., Jordan, V.C.: Selective estrogen receptor and modulators and phytoestrogens. Planta Med. 74, 1656–1665 (2008)

    Article  CAS  Google Scholar 

  14. Zand, R.S., Jenkins, D.J., Diamandis, E.P.: Steroid hormone activity of flavonoids and related compounds. Breast Cancer Res. Treat. 62, 35–49 (2000)

    Article  CAS  Google Scholar 

  15. Scoene, N.W., Guidry, C.A.: Dietary soy isoflavones inhibit activation of rat platelets. J. Nutr. Biochem. 10, 421–426 (1999)

    Article  Google Scholar 

  16. Stancanelli, R., Mazzaglia, A., Tommasini, M.L., Calabrò, M.L., Villari, V., Guardo, M., Ficarra, P., Ficarra, R.: The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: a spectroscopic investigation with implications in the pharmaceutical analysis. J. Pharm. Biomed. Anal. 44, 980–984 (2007)

    Article  CAS  Google Scholar 

  17. Daruházi, Á.E., Szente, L., Balogh, B., Mátyus, P., Béni, S., Takács, M., Gergely, A., Horváth, P., Szőke, É., Lemberkovics, É.: Utility of cyclodextrins in the formulation of genistein: part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins. J. Pharm. Biomed. Anal. 48, 636–640 (2008)

    Article  Google Scholar 

  18. Borghetti, G.S., Pinto, A.P., Lular, I.S., Sinisterra, R.D., Teixeira, H.F., Bassani, V.L.: Daidzein/cyclodextrin/hydrophilic polymer ternary systems. Drug Dev. Ind. Pharm. 37, 886–893 (2011)

    Article  CAS  Google Scholar 

  19. Calabrò, M.L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., Gamberini, G.: Effects of α- and β-cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. J. Pharm. Biomed. Anal. 35, 365–377 (2004)

    Article  Google Scholar 

  20. Basavoju, S., Boström, D., Velaga, S.P.: Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm. Res. 25, 530–541 (2008)

    Article  CAS  Google Scholar 

  21. Higuchi, T., Connors, K.A.: Phase solubility techniques. Adv. Anal. Chem. Instr. 4, 117–212 (1965)

    CAS  Google Scholar 

  22. Schneider, H.-J., Hacket, F., Rűdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

  23. Kim, H., Choi, J., Jung, S.: Inclusion complexes of modified cyclodextrins with some flavonols. J. Incl. Phenom. Macrocycl. Chem. 64, 43–47 (2009)

    Article  CAS  Google Scholar 

  24. Zhen, Y., Haworth, I.S., Zuo, Z., Chow, M.S.S., Chow, A.H.L.: Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. J. Pharm. Sci. 94, 1079–1089 (2005)

    Article  Google Scholar 

  25. Ishizuka, Y., Fujiwara, M., Kanazawa, K., Nemoto, T., Fujita, K., Nakanishi, H.: Three-dimensional structure of the inclusion complex between phloridzin and β-cyclodextrin. Carbohydr. Res. 337, 1737–1743 (2002)

    Article  CAS  Google Scholar 

  26. Chouly, C., Colquhoun, I.J., Jodelet, A., York, G., Walker, G.C.: NMR studies of succinoglycan repeating-unit octasaccharides from Rhizobium meliloti and Agrobacterium radiobacter. Int. J. Biol. Macromol. 17, 357–363 (1995)

    Article  CAS  Google Scholar 

  27. Bilensoy, E., Doğan, L., Şen, M., Hincal, A.: Complexation behavior of antiestrogen drug tamoxifen citrate with natural and modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 651–655 (2007)

    Article  CAS  Google Scholar 

  28. Figueiras, A., Ribeiro, L., Vieira, M.T., Veiga, F.: Preparation and physicochemical characterization of omeprazole: methyl-beta-cyclodextrin inclusion complex in solid state. J. Incl. Phenom. Macrocycl. Chem. 57, 173–177 (2007)

    Article  CAS  Google Scholar 

  29. Sinha, V.R., Anitha, R., Ghosh, S., Nanda, A., Kumria, R.: Complexation of celecoxib with β-cyclodextrin: characterization of the interaction in solution and in solid state. J. Pharm. Sci. 94, 676–687 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology NRF-2011-355-D00017) and by Priority Research Centers Program through National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology (KRF-2009-0093824)). SDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunho Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E., Choi, J.M. & Jung, S. Solubility enhancement of isoflavonoids by complexation with acyclic hexadecasaccharides, succinoglycan dimers isolated from Sinorhizobium meliloti . J Incl Phenom Macrocycl Chem 76, 133–141 (2013). https://doi.org/10.1007/s10847-012-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0182-0

Keywords

Navigation