Skip to main content

Advertisement

Log in

Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two ratiometric fluorescence and colorimetric anion sensors were designed and synthesized according to simple Schiff base reaction. Two compounds 1 and 2 were characterized by ESI–MS, elemental analyses and 1H NMR. The sensors could give fast and visible color changes from yellow to red upon presence of the strong basic anions such as acetate ion. In particular, two compounds exhibited marked blue shifts (about 136 nm) in their emission spectra, when interacting with anions. Accordingly, the compounds 1 and 2 could act as real-time ratiometric fluorescence and colorimetric sensors for anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rebecca, M.D., Emma, B.V., Frederick, M.P., Paul, E.K., Thorfinnur, G.: Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 39, 3936–3953 (2010)

    Article  Google Scholar 

  2. Amendola, V., Fabbrizzi, L., Mosca, L.: Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39, 3889–3915 (2010)

    Article  CAS  Google Scholar 

  3. Moragues, M.E., Martínez-Máñez, R., Sancenón, F.: Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev. 40, 2593–2643 (2011)

    Article  CAS  Google Scholar 

  4. Joseph, R., Rao, C.P.: Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. Chem. Rev. 111(8), 4658–4702 (2011)

    Article  CAS  Google Scholar 

  5. Furman, P.A., Fyfe, J.A., Clair, M.H., Weinhold, K., Rideout, J.L., Freeman, G.A., Lehrman, S.N., Bolognesi, D.P., Broder, S., Mitsuya, H., Barry, D.W.: Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Nat. Acad. Sci. USA 83, 8333–8337 (1986)

    Article  CAS  Google Scholar 

  6. Král, V., Sessler, J.L.: Molecular recognition via base-pairing and phosphate chelation. Ditopic and tritopic sapphyrin-based receptors for the recognition and transport of nucleotide monophosphates. Tetrahedron 51, 539–554 (1995)

    Article  Google Scholar 

  7. Ojida, A., Mito-oka, Y., Sada, K., Hamachi, I.: Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. J. Am. Chem. Soc. 126, 2454–2463 (2004)

    Article  CAS  Google Scholar 

  8. Gale, P.A.: Amidopyrroles: from anion receptors to membrane transport agents. Chem. Commun. 30, 3761–3772 (2005)

    Article  Google Scholar 

  9. Voet, D., Voet, J.G.: Biochemistry, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  10. Ho, T.Y., Scranton, M.I., Taylor, G.T., Varela, R., Thunell, R.C., Muller-Karger, F.: Acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling. Limnol. Oceanogr. 47, 1119–1128 (2002)

    Article  CAS  Google Scholar 

  11. Galbraith, E., James, T.D.: Boron based anion receptors as sensors. Chem. Soc. Rev. 39, 3831–3842 (2010)

    Article  CAS  Google Scholar 

  12. Wu, J.S., Liu, W.M., Ge, J.C., Zhang, H.Y., Wang, P.F.: New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40, 3483–3495 (2011)

    Article  CAS  Google Scholar 

  13. Zhou, Y., Yoon, J.: Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem. Soc. Rev. 41(1), 52–67 (2012)

    Article  CAS  Google Scholar 

  14. Zhang, J.F., Zhou, Y., Yoon, J., Kim, J.S.: Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40, 3416–3429 (2011)

    Article  CAS  Google Scholar 

  15. Aragay, G., Pons, J., Merkoçi, A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433–3458 (2011)

    Article  CAS  Google Scholar 

  16. Boens, N., Leen, V., Dehaen, W.: Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41(3), 1130–1172 (2012)

    Article  CAS  Google Scholar 

  17. Yu, H.B., Xiao, Y., Guo, H.Y., Qian, X.H.: Convenient and efficient fret platform featuring a rigid biphenyl spacer between rhodamine and BODIPY: transformation of ‘Turn-On’ sensors into ratiometric ones with dual emission. Chem. Eur. J. 17, 3179–3191 (2011)

    Article  CAS  Google Scholar 

  18. Shao, J., Lin, H., Cai, Z.S., Lin, H.K.: A simple colorimetric and ON–OFF fluorescent chemosensor for biologically important anions based on amide moieties. J. Photochem. Photobiol. B 95, 1–5 (2009)

    Article  CAS  Google Scholar 

  19. Shao, J., Lin, H., Lin, H.K.: Rational design of a colorimetric and ratiometric fluorescent chemosensor based on intramolecular charge transfer (ICT). Talanta 77, 273–277 (2008)

    Article  CAS  Google Scholar 

  20. Wu, J.S., Zhou, J.H., Wang, P.F., Zhang, X.H., Wu, S.K.: New fluorescent chemosensor based on exciplex signaling mechanism. Org. Lett. 26, 2133–2136 (2005)

    Article  Google Scholar 

  21. Lee, M.H., Quang, D.T., Jung, H.S., Yoon, J., Lee, C.H., Kim, J.S.: Ion-induced FRET on–off in fluorescent calix[4]arene. J. Org. Chem. 72, 4242–4245 (2007)

    Article  CAS  Google Scholar 

  22. Jung, H.S., Kim, H.J., Vicens, J., Kim, J.S.: A new fluorescent chemosensor for F-based on inhibition of excited-state intramolecular proton transfer. Tetrahedron Lett. 50, 983–987 (2009)

    Article  CAS  Google Scholar 

  23. Shao, J., Lin, H., Lin, H.K.: A simple and efficient colorimetric anion sensor based on a thiourea group in DMSO and DMSO–water and its real-life application. Talanta 75, 1015–1020 (2008)

    Article  CAS  Google Scholar 

  24. Connors, K.A.: Binding constants, 1st edn. Wiley, New York (1987)

    Google Scholar 

  25. Helal, A., Kim, H.S.: Thiazole-based chemosensor III: synthesis and fluorescence sensing of CH3CO2 based on inhibition of ESIPT. Tetrahedron 66, 7097–7103 (2010)

    Article  CAS  Google Scholar 

  26. Helal, A., Thao, N.T.T., Lee, S.W., Kim, H.S.: Thiazole-based chemosensor II: synthesis and fluorescence sensing of fluoride ions based on inhibition of ESIPT. J. Incl. Phenom. Macrocycl. Chem. 66, 87–94 (2010)

    Article  CAS  Google Scholar 

  27. Baggi, G., Boiocchi, M., Fabbrizzi, L., Mosca, L.: Moderate and advanced intramolecular proton transfer in urea–anion hydrogen-bonded complexes. Chem. Eur. J. 16, 9423–9439 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Natural Science Foundation of Universities of Inner Mongolia Autonomous Region (No: NG09168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Shao, J. Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. J Incl Phenom Macrocycl Chem 76, 99–105 (2013). https://doi.org/10.1007/s10847-012-0177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0177-x

Keywords

Navigation