Skip to main content
Log in

Preorganized, cone-conformational calix[4]arene possessing four propylenephosphonic acids with high extraction ability and separation efficiency for trivalent rare earth elements

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

p-t-Octylcalix[4]arene with tetraphosphonic acid at lower rim in cone conformation has been designed and synthesized as a new extraction reagent to investigate the extraction behavior of the nine trivalent rare earth elements: La, Pr, Nd, Sm, Eu, Gd, Ho, Y, and Er. The extraction of rare earth metals with the present extractant occurs by a simple ion-exchange mechanism. The stoichiometry of the extractant to rare earth metal ion was determined to be 2:1 based on the extraction equation, half pH values, pH1/2, and the difference in the values of the extraction equilibrium constants of nine trivalent rare earth elements and separation factors between adjacent rare earth elements. This allowed for comparison of the estimated extraction efficiency and selectivity. The present extractant exhibited extremely high extractability and sufficiently high separation efficiency of rare earth metals, compared with calix[4]arene tetraphosphonic acid at upper rim, calix[4]arene tetraacetic acid at lower rim as previously reported and the commercial extraction reagent. This results was attributed to size and multidentate effects based on the preorganized cyclic structure of calix[4]arene and to the original selectivity of functional group for heavier rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rice, N.M.: Recent developments and potential uses for carboxylic acid extractants—a review. Hydrometallurgy 3, 111–133 (1978)

    Article  CAS  Google Scholar 

  2. Preston, J.S.: Solvent extraction of metals by carboxylic acids. Hydrometallurgy 14(2), 171–188 (1985)

    Article  CAS  Google Scholar 

  3. Freiser, H.: Solvent extraction of tervalent lanthanides as chelates—a systematic investigation of extraction equilibria. Solvent Extr. Ion Exch. 6(6), 1093–1108 (1988)

    Article  CAS  Google Scholar 

  4. Cox, M.: New reagents. In: Alegret, S. (ed.) Developments in Solvent Extraction, Chap. 8, pp. 151–158. Ellis Horwood Ltd, Chichester (1988)

    Google Scholar 

  5. Otu, E.O., Westland, A.D.: Solvent extraction with organophosphonic mono-acidic esters. Solv. Extr. Ion Exch. 8(6), 759–781 (1990)

    Article  CAS  Google Scholar 

  6. Yuan, C., Li, S., Feng, H.: In: Proceedings of ISEC’96, Value adding through Solvent Extraction, Melbourne, pp. 329–334 (1996)

  7. Bogacki, M.B.: Physicochemical modification of copper extractants. A review. Solvent Extr Ion Exch 15(5), 731–755 (1997)

    Article  CAS  Google Scholar 

  8. Kolarik, Z.: Recent trends in the search for new extractants. Min. Proc. Extr. Met. Rev Int. J. 21(1–5), 89–141 (2000)

    Article  CAS  Google Scholar 

  9. Gloe, K., Stephan, H., Grotjahn, M.: Where is the Anion Extraction Going? Chem. Eng. Technol. 26(11), 1107–1117 (2003)

    Article  CAS  Google Scholar 

  10. Cox, M.: Solvent extraction in hydrometallurgy. In: Rydberg, J., Cox, M., Musikas, C., Choppin, G.R. (eds.) Solvent extraction principles and practice, Chap. 11, pp. 455–505. Marcel Dekker, New York (2004)

    Google Scholar 

  11. Ritcey, G.M.: Extractants. In: Ritcey, G.M. (ed.) Solvent Extraction—Principles and Applications to Process Metallurgy vol 1, revised 2nd ed., Chap. 3, pp. 69–184. G.M. Ritcey & Associates Incorporated, Ottawa (2006)

    Google Scholar 

  12. Inoue, K., Nakashio, F.: Industrial chelate extractants—Preparation and recent progress. Chem. Eng. Jpn. 46(3), 164–171 (1982)

    CAS  Google Scholar 

  13. Sudderth, R.B., Kordosky, G.A.: Chemical processing. In: Malhotra, D., Riggs, W.F. (eds.) Some Practical Considerations in the Evaluation and Selection of Solvent Extraction Reagents, Chap. 20, pp. 181–196. S.M.E Littleton, Colorado (1986)

    Google Scholar 

  14. Ritcey, G.M.: Extractants. In: Ritcey, G.M. (ed.) Solvent extraction—Principles and Applications to Process Metallurgy volume 1, revised 2nd ed., Chap. 3, p. 70. G.M. Ritcey & Associates Incorporated, Ottawa (2006)

    Google Scholar 

  15. Peppard, D.F., Mason, G.W., Maier, J.L., Driscoll, W.J.: Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J. Inorg. Nucl. Chem. 4, 334–343 (1957)

    Article  CAS  Google Scholar 

  16. Peppard, D.F., Mason, G.W., Moline, S.W.: The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr. J. Inorg. Nucl. Chem. 5, 141–146 (1957)

    Article  CAS  Google Scholar 

  17. Peppard, D.F., Driscoll, W.J., Sironen, R.J., McCarry, S.: Nonmonotonic ordering of lanthanides in tributyl phosphate-nitric acid extraction systems. J. Inorg. Nucl. Chem. 4, 326–333 (1957)

    Article  CAS  Google Scholar 

  18. Peppard, D.F., Mason, G.W., Hucher, I.: Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 24, 881–888 (1962)

    Article  Google Scholar 

  19. Peppard, D.F., Mason, G.W., Giffin, G.: Extraction of selected trivalent lanthanide and actinide cations by bis (hexoxy-ethyl)phosphoric acid. J. Inorg. Nucl. Chem. 27, 1683–1691 (1965)

    Article  CAS  Google Scholar 

  20. Gutsche, C.D. (ed.): Calixarenes Revisited. Royal Society of Chemistry, Cambridge (1996)

    Google Scholar 

  21. Asfari, Z., Boehmer, V., Harrowfield, J.M., Vicens, J. (eds.): Calixarenes 2001. Kluwer, The Netherlands (2001)

    Google Scholar 

  22. Agrawal, Y.K., Kunji, S., Menon, S.K.: Analytical applications of calixarenes. Rev. Anal. Chem. 17(2), 69–139 (1998)

    Article  CAS  Google Scholar 

  23. Izatt, R.M., Pawlak, K., Bradshaw, J.M.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91(8), 1721–1785 (1991)

    Article  CAS  Google Scholar 

  24. Arnaud-Neu, F.: Solution chemistry of lanthanide macrocyclic complexes. Chem. Soc. Rev. 23(4), 235–241 (1994)

    Article  CAS  Google Scholar 

  25. Roundhill, D.M.: Metal complexes of calixarenes. Prog. Inorg. Chem. 43, 533–592 (1995)

    Article  CAS  Google Scholar 

  26. Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 367(2), 103–128 (2000)

    Article  CAS  Google Scholar 

  27. Menon, S.K., Sewani, M.: Chemical modifications of calixarenes and their analytical applications. Rev. Anal. Chem. 25(1), 49–82 (2006)

    Article  CAS  Google Scholar 

  28. Sliwa, W., Girek, T.: Calixarene complexes with metal ions. J. Incl. Phenom. Macrocycl. Chem. 66, 15–41 (2010)

    Article  CAS  Google Scholar 

  29. Malone, J.F., Marrs, D.J., McKervey, M.A., O’Hagen, P., Thompson, N., Walker, A., Arnaud-Neu, F., Mauprivez, O., Weill, M.-J.S.: Calix[n]arene phosphine oxides. A new series of cation receptors for extraction of europium, thorium, plutonium and americium in nuclear waste treatment. J. Chem. Soc. Chem. Commun., 2151-2153 (1995)

  30. Arnaud-Neu, F., Boehmer, V., Dozol, J.-F., Gruetter, C., Jakobi, R.A., Kraft, D., Mauprivez, O., Rouquette, H., Weill, M.-J.S., Simon, N., Vogt, W.: Calixarenes with diphenylphosphoryl acetamide functions at the upper rim. A new class of highly efficient extractants for lanthanides and actinides. J. Chem. Soc. Perkin Trans 2(6), 1175–1182 (1996)

    Google Scholar 

  31. Delmau, L.H., Simon, N., Weill, M.-J.S., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tournois, B., Boehmer, V.: CMPO-substituted calix[4]arenes, extractants with selectivity among trivalent lanthanides and between trivalent actinides and lanthanides. Chem. Commun. 16, 1627–1628 (1998)

    Article  Google Scholar 

  32. Delmau, L.H., Simon, N., Weill, M.-J.S., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tuurnois, B., Gruetter, C., Musigmann, C., Tunayar, A., Boehmer, V.: Extraction of trivalent lanthanides and actinides by “CMPO-like” calixarenes. Sep. Sci. Technol. 34(6,7), 863–876 (1999)

    CAS  Google Scholar 

  33. Matthews, S.E., Saadioui, M., Boehmer, V., Barboso, S., Arnaud-Neu, F., Weill, M.-J.S., Jose, C.M., Alejandro, G., Dozol, J.-F.: Conformationally mobile wide rim carbamoylmethylphosphine oxide (CMPO)-calixarenes. J. Prakt. Chem. 341(3), 264–273 (1999)

    Article  CAS  Google Scholar 

  34. Arnaud-Neu, F., Browne, J.K., Byrne, D., Marrs, D.J., McKervey, M.A., O’Hagen, P., Weill, M.-J.S., Walker, A.: Extraction and complexation of alkali, alkaline earth, and F-element cations by calixaryl phosphine oxides. Chem. Eur. J. 5(1), 175–186 (1999)

    Article  CAS  Google Scholar 

  35. Barboso, S., Carrera, A.G., Matthews, S.E., Arnaud-Neu, F., Boehmer, V., Dozol, J.-F., Rouquette, H., Weill, M.J.-S.: Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. J. Chem. Soc. Perkin Trans 2(4), 719–724 (1999)

    Google Scholar 

  36. Amatas, L., Klimchuk, O., Rudzevich, V., Pirozhenko, V., Kalchenko, V., Smirnov, I., Babain, V., Efremova, T., Varnek, A., Wipff, G., Arnaud-Neu, F., Roch, M., Saadioui, M., Boehmer, V.: New organophosphorus calix[4]arene ionophores for trivalent lanthanide and actinide cations. J. Supramol. Chem. 2(4–5), 421–427 (2003)

    Google Scholar 

  37. Schmidt, C., Saadioui, M., Boehmer, V., Host, V., Spirlet, M.-R., Desreux, J.F., Brisach, F., Arnaud-Neu, F., Dozol, J.-F.: Modification of calix[4]arenes with CMPO-functions at the wide rim. Synthesis, solution behavior, and separation of actinides from lanthanides. Org. Biomol. Chem. 1(22), 4089–4096 (2003)

    Article  CAS  Google Scholar 

  38. Karavan, M., Arnaud-Neu, F., Hubscher-Bruder, V., Smirnov, I., Kalchenko, V.: Novel phosphophorylated calixarenes for the recognition of f-elements. J. Incl. Phenom. Macrocycl. Chem. 66, 113–123 (2010)

    Article  CAS  Google Scholar 

  39. Harrowfield, J.M., Mocerino, M., Peachey, B.J., Skelton, B.W., White, A.H.: Rare-earth-metal solvent extraction with calixarene phosphates. J. Chem. Soc. Dalton Trans., 1687–1699 (1996)

  40. Ludwig, R., Inoue, K., Yamato, T.: Solvent extraction behaviour of calixarene-type cyclophanes towards trivalent lanthanum, neodymium, europium, erbium, and ytterbium. Solvent Extr. Ion Exch. 11(2), 311–330 (1993)

    Article  CAS  Google Scholar 

  41. Ludwig, R.; Inoue, K.; Shinkai, S.; Gloe, K.; Solvent extraction behaviour of p-tert-butylcalix[n]arene carboxylic acid derivatives towards trivalent lanthanides and sodium. In: Proc.ISEC’93, Solvent Extraction in the Process Industries, vol. 1, pp. 273-278 (1993)

  42. Ohto, K.; Yano, M.; Inoue, K.; Yamamoto, T.; Goto, M.; Nakashio, F.; Nagasaki, T.; Shinkai, S.: Extraction of Rare Earths with New Extractants of Calixarene Derivatives. In: Proc.ISEC’93, Solvent Extraction in the Process Industries, vol. 1, pp. 364–369 (1993)

  43. Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., Nagasaki, T.: Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calixarenes. Anal. Sci. 11(6), 893–902 (1995)

    Article  CAS  Google Scholar 

  44. Ludwig, R.; Gauglitz, R.: Calixarene type extractants for metal ions with improved properties. In: Proc.ISEC’96. Value Adding Through Solvent Extraction, vol.1, pp. 365–369 (1996)

  45. Ludwig, R., Kunogi, K., Dung, N., Tachimori, S.: A calixarene-based extractant with selectivity for AmIII over LnIII. Chem.Commun. 20, 1985–1986 (1997)

    Article  Google Scholar 

  46. Ludwig, R., Lentz, D., Nguyen, T.K.D.: Trivalent lanthanide and actinide extraction by calixarenes with different ring sizes and different molecular flexibility. Radiochim. Acta 88(6), 335–343 (2000)

    Article  CAS  Google Scholar 

  47. Oshima, T., Yamamoto, T., Ohto, K., Goto, M., Nakashio, F., Furusaki, S.: A Calixarene-based Phosphoric Acid Extractant for Rare Earth Separation. Solvent Extr. Res. Dev., Jpn. 8, 194–204 (2001)

    CAS  Google Scholar 

  48. Jurecka, P., Vojtisek, P., Novotny, K., Rohovec, J., Lukes, I.: Synthesis, characterization and extraction behaviour of calix[4]arene-based phosphonic acids. J. Chem. Soc. Perkin Trans 2(7), 1370–1377 (2002)

    Google Scholar 

  49. Matulkova, I., Rohovec, J.: Synthesis, characterization and extraction behaviour of calix[4]arene with four propylene phosphonic acid groups on the lower rim. Polyhedron 24, 311–317 (2005)

    Article  CAS  Google Scholar 

  50. Ohto, K., Ota, H., Inoue, K.: Solvent extraction of rare earths with a calix[4]arene compound containing phosphonate groups introduced onto upper rim. Solvent Extr. Res. Dev. Jpn. 4, 167–182 (1997)

    CAS  Google Scholar 

  51. Ohto, K., Yamasaki, T., Inoue, K.: Extractive separation of rare earth ions by using calix[4]arene with isopropyl hydrogen phosphonate at upper rim. Ars Sep. Acta 4, 96–106 (2007)

    Google Scholar 

  52. Ford-Moore, A.H., Williams, J.H.: The reaction between trialkyl phosphites and alkyl halides. J. Chem. Soc. 69, 1465–1467 (1947)

    Article  Google Scholar 

  53. Harned, H.S., Owen, B.B. (eds.): The Physical Chemistry of Electrolytic, 3rd edn, p. 748. Reinhold Publishing Corporation, New York (1958)

    Google Scholar 

  54. Eigen, M.: Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 6(1), 97–115 (1963)

    Article  CAS  Google Scholar 

  55. Kolarik, Z., Pankova, H.: Acidic organophosphorus extractants—I Extraction of lanthanides by means of dialkyl phosphoric acids-effect of structure and size of alkyl group. J. Inorg. Nucl. Chem. 28, 2325–2333 (1966)

    Article  CAS  Google Scholar 

  56. Peppard, D.F., Mason, G.W., Lewey, S.: A tetrad effect in the liquid–liquid extraction ordering of lanthanides (III). J. Inorg. Nucl. Chem. 31, 2271–2272 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Ohto.

Additional information

This article paper is dedicated to Prof. Leonard F. Lindoy on the celebration of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohto, K., Matsufuji, T., Yoneyama, T. et al. Preorganized, cone-conformational calix[4]arene possessing four propylenephosphonic acids with high extraction ability and separation efficiency for trivalent rare earth elements. J Incl Phenom Macrocycl Chem 71, 489–497 (2011). https://doi.org/10.1007/s10847-011-9998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9998-2

Keywords

Navigation