Skip to main content
Log in

Synthesis of the macrotricyclic ligands 8,18 dioxa-1,5,11,15-tetraaza-[13.5.2.25,11]-eicosane (L1) and 7,16 dioxa-1,4,10,13-tetraaza-[11.5.3.34,10]-octadecane (L2). Crystal structures of the copper(II) complexes, [Cu(L1)](ClO4)2 and [Cu(L2)](ClO4)2·CH3NO2

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two isomeric polymacrocyclic ligands, L1 and L2 have been synthesized and the corresponding copper(II) complexes prepared. Reaction of the macrobicycle 15-oxa-1,5,8,12-tetraazabicyclo[10.5.2]nonadecane (L3) with diglycolyl chloride in base, yielded a diamide and following reduction, led to formation of the tricyclic ligand L1. A single crystal X-ray study of the blue, [Cu(L1)](ClO4)2, (C2/c monoclinic, a = 33.518(4), b = 16.3778(18), c = 13.7391(19) Å, β = 90.56(3)°, V = 7541.8 (16) Å3, Z = 12, R (F0) = 0.065, Rw = 0.066) reveals the presence of two independent [Cu(L1)]2+ cations displaying either five- or six- coordinate geometry. In the former distorted square pyramid, only one of the ether oxygens of the ligand is bound to the copper center, Cu–N1 = 2.083(7), Cu–N2 = 2.076(9), Cu–O1 = 2.276(11) Å and the Cu–O bond is at the longer end of axial distances of this type. However, the six-coordinate species is considerably more distorted, with in equivalence in both the metal-nitrogen and -oxygen bonds, Cu–N1 = 2.082(7), Cu–N2 = 2.096(7), Cu–N3 = 2.103(7), Cu–N4 = 2.068(7), Cu–O1 = 2.597(7), Cu–O2 = 2.427(7) Å, N(1)–Cu–O(1) = 71.0(2), N(3)–Cu–O(1) = 71.6(2), O(1)–Cu–O(2) = 64.6(2). The ligand L2 has been synthesized by reaction of the ten-membered macrocycle 1-oxa-4,8-diaza decane, (10-N2O) in dichloromethane with two moles of chloroacetyl chloride. The bis-pendant-armed product was further reacted with another mole of 10-N2O to yield a tricyclic diamide. The crystal structure of the intermediate diamide (Pnam, no.62 orthorhombic, a = 13.712(9), b = 9.111(5), c = 15.110(7) Å, V = 1887.6 Å3, Z = 8, R = 0.103, Rw = 0.103) has been determined. Subsequent reduction led to the formation of L2. The ligand is readily protonated to give a diammonium cation, [H2L2]2+. A single crystal structure of the [Cu(L2)](ClO4)2·CH3NO2 complex (P21/c, monoclinic a = 9.731(3), b = 16.065(5), c = 18.076(6) Å, β = 91.627(7)°, V = 2824.5 (15) Å3, Z = 4, R1 = 0.090, wR2 = 0.215) indicates considerable asymmetry in the cyclam plane (Cu–N1 = 2.099(11), Cu–N2 = 2.061(10), Cu–N3 = 2.065(10), Cu–N4 = 2.111(11), Cu-O12 = 2.410(7) Å) with one of the ether oxygens is coordinated to the metal, while the other is unbound. The ligand adopts a syn-configuration with both the attached macrocyclic units on the same side of the cyclam ring. Spectroscopic studies are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindoy, L.: Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  2. Fabrizzi, L.: The stabilization of high oxidation states of metals through coordination by poly-aza macrocycles. Comments Inorg. Chem. 4, 33–54 (1985)

    Article  Google Scholar 

  3. Melson, G.A. (ed.): Coordination Chemistry of Macrocyclic Compounds. Plenum Press, New York (1979)

    Google Scholar 

  4. Joseph, E.B., Connolly, P.J., Sardella, D.J., Jasinski, J.P., Butcher, R.J.: Conformational characterization of square planar nickel(II) tetraaza macrocyclic complexes by proton NMR. Crystal structure of [Ni(13aneN4)]ZnCl4 Inorg. Chim. Acta. 230, 19–28 (1995)

    Google Scholar 

  5. Pierce, D.T., Hatfield, T.L., Billo, J., Ping, Y.: Oxidatively induced isomerization of square-planar [Ni(1, 4, 8, 11-tetraazacyclotetradecane)](ClO4)2. Inorg. Chem. 36, 2950–2955 (1997)

    Article  CAS  Google Scholar 

  6. Barefield, K.E.: Coordination chemistry of the N-tetraalkylated cyclam ligands–a status report. Coord. Chem. Rev. 254, 1607–1627 (2010)

    Article  Google Scholar 

  7. Bosnich, B., Poon, C.K., Tobe, M.L.: Complexes of cobalt(III) with a cyclic tetradentate secondary Amine. Inorg. Chem. 4, 1102–1108 (1965)

    Article  CAS  Google Scholar 

  8. Fortier, D.G., McAuley, A.: Synthesis of a novel macrobicyclic ligand, 15-thia-1, 5, 8, 12- tetraazabicyclo[10.5.2]nonadecane, and its nickel(II) and copper(II) complexes. X-ray crystal structures of [Cu(L1)](ClO4)2 and [Ni(L1)(ClO4)]ClO4. Inorg. Chem. 28, 655–662 (1989)

    Article  CAS  Google Scholar 

  9. Fortier, D.G., McAuley, A.: Template synthesis of the macrobicyclic ligand 1, 5, 8, 12, 15- pentaazabicyclo[10.5.2]nonadecane: evidence for imidate and enamine intermediates stabilized by copper(II). J. Am. Chem. Soc. 112, 2640–2647 (1990)

    Article  CAS  Google Scholar 

  10. McAuley, A., Fortier, D.F., Macartney, D.H., Whitcombe, T.W.: Xu, C.: Synthesis and crystal structure of nickel(II) complexes of macrobicyclic ligands: identification and electron-transfer reactions of the corresponding nickel(III) complexes in solution. J. Chem. Soc., Dalton Trans. 1994(14), 2071–2079 (1994)

    Article  Google Scholar 

  11. Beveridge, K.A., McAuley, A., Xu, C.: Preparation of the macrobicyclic ligand 15-oxa- 1, 5, 8, 12-tetraazabicyclo[10.5.2]nonadecane: characterization of copper(II) intermediates in a template synthesis. Inorg. Chem. 30, 2074–2082 (1991)

    Article  CAS  Google Scholar 

  12. Ingham, A.M., Xu, C., Whitcombe, T.W., Bridson, J.N., McAuley, A.: Substitution reactions at the Ni(III) cation in macrobicyclic complexes–Reaction of metal ion complexes prepared from ligands L1 (17-oxa-1,4,8,11-tetraazabicyclo[6.5.6]nonadecane) and L2 (17-oxa-1,4,8,11-tetraazabicyclo[10.5.2]nonadecane) with chloride ion. Can. J. Chem. 80, 155–162 (2002)

    Article  CAS  Google Scholar 

  13. Coulter, K.R., McAuley, A., Rettig, S.J.: Synthesis and characterization of the pentadentate macrobicyclic ligand, 14-thia-1, 4, 8, 11-tetraazabicyclo[9.5.3]nonadecane (L1) and its nickel(II) complexes. X-ray crystal structure of [Ni(L1)(ClO4)](ClO4)·2[Ni(L1)(OH2)](ClO4)2·6H2O. Can. J. Chem. 79, 930–937 (2001)

    Article  CAS  Google Scholar 

  14. Rodopoulos, M., Rodopoulos, T., Bridson, J.N., Elding, L.-I., Rettig, S.J., McAuley, A.: Synthesis of 14-oxa-1, 4, 8, 11-tetraazabicyclo[9.5.3]nonadecane (L1) and a spectroscopic and structural study of [Ni(L1)(ClO4)](ClO4) and of the macrobicyclic precursor diamide complex, [Ni(HL2)](ClO4); chloride substitution kinetics of the corresponding [Ni(III)(L1)]3+ species. Inorg. Chem. 40, 2737–2742 (2001)

    Article  CAS  Google Scholar 

  15. Ingham, A.I., Rodopoulos, M., Coulter, K.R., Rodopoulos, T., Subramanian, S., McAuley, A.: Synthesis, characterization and reactivity of some macrobicyclic and macrotricyclic hetero-clathrochelate complexes. Coord. Chem. Rev. 233–234, 255–271 (2002)

    Article  Google Scholar 

  16. Bu, H., An, D.L., Cao, X.C., Zhang, R.H., Clifford, T., Kimura, E.: New dioxocyclam ligands appended with 2-pyridylmethyl pendant(s): synthesis, properties and crystal structure of their copper(II) complexes (dioxocyclam = 1,4,8,11-tetraazacyclotetradecane- 2,14-dione). J. Chem. Soc., Dalton. 1998(13), 2247–2252 (1998)

    Article  Google Scholar 

  17. Barclay, T., McAuley, A., Subrananian, S.: Synthesis and structure of a new macrotricyclic ligand that encapsulates lithium and transition metal ions. J. Chem. Soc., Chem. Commun. 2002(2), 170–171 (2002)

    Google Scholar 

  18. Goeta, A.E., Howard, J.A.K., Maffeo, D., Puschmann, H., Williams, J.A.G., Yufit, D.S.: Copper(II) complexes of the isomeric tetraazamacrocyclic ligands 1,11- and 1,8-bis(2- pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane and of the 1,4,8,11-tetraazacyclotetradecane-5,12-dione analogue at neutral and basic pH. J. Chem. Soc, Dalton, Soc. 2000(12), 1873–1880 (2000)

    Google Scholar 

  19. Luo, H., Rogers, R.D., Brechbiel, M.W.: A convenient and selective route to a trans- difunctionalized macrocyclic hexadentate N4O2 ligand. Can. J. Chem. 79, 1105–1109 (2001)

    Article  CAS  Google Scholar 

  20. McAuley, A., Subramanian, S., Barclay, T.: Synthesis, structure and electrochemistry of isomeric nickel(II) complexes of a [9]ane fused cyclam macrotricycle: evidence for a stable trans-IV and a redox induced rearrangement in a trans-I conformation. J. Chem. Soc. Dalton 39, 9956–9961 (2010)

    Article  CAS  Google Scholar 

  21. Weisman, G.R., Rogers, M.R., Wong, E.H., Jasinski, J.P., Paight, E.S.J.: Cross-bridged cyclam. Protonation and lithium cation (Li+) complexation in a diamond-lattice cleft. J. Am. Chem. Soc. 112, 8604–8605 (1990)

    Article  CAS  Google Scholar 

  22. Coppens, P., Lieserowich, L., Rabinovich, D. modified by Bushnell, G.W.: unpublished

  23. Sheldrick, G.M.: SHELX-76, Programs for Crystal Structure Solution and Refinement. University of Cambridge, Cambridge (1976)

    Google Scholar 

  24. Gabe, E.J., Le Page, Y., Charland, J.-P., Lee, F.L., White, P.S.: NRCVAX–an interactive program system for structure analysis. J. Appl. Cryst. 22, 384–387 (1989)

    Article  CAS  Google Scholar 

  25. Scattering Factors from Int. Tab. Vol. 4: International Tables for X-ray Crystallography, Vol. IV. Kynoch Press, Birmingham (1974)

  26. Johnson, C.K.: ORTEP—A Fortran Thermal Ellipsoid Plot Program. Technical Report ORNL-5138, Oak Ridge (1976)

  27. Sheldrick, G.M.: SADABS. University of Göttingen, Germany (1996)

    Google Scholar 

  28. Sheldrick, G.M.: SHELX-97, Programs for Crystal Structure Solution and Refinement. University of Göttingen, Germany (1997)

    Google Scholar 

  29. Ingham, A.I., Xu, C.: unpublished observations

  30. Tomlinson, A.A.G., Hathaway, B.M.: The electronic properties and stereochemistry of the copper(II) ion. Part II. The monoamine adducts of bisethylenediaminecopper(II) complexes. J. Chem. Soc. (A). 1968, 1685–1688 (1968)

    Google Scholar 

  31. Springborg, J., Kofod, P., Olsen, C.E., Toftlund, H., Søtofte, I.: Synthesis and crystal structure of a small bicyclic tetra-aza- proton sponge 1,4,7,10-tetra-aza[5.5.3] pentadecane dibromide perchlorate. Acta Chim. Scand. 49, 547–554 (1995)

    Article  CAS  Google Scholar 

  32. Alder, R.W., Moss, R.E., Sessions, R.B.: Intrabridgehead hydrogen-bonded ions: spectroscopic characteristics and the question of single vs double minimum potentials. J. Chem. Soc. Chem. Comm. 997, 1000–1002 (1983)

    Article  Google Scholar 

  33. Bencini, A., Bianchi, A., Bazzicalupi, C., Ciampolini, M., Fusu, V., Micheloni, M., Nardi, N., Paoli, P., Valtancoli, B.: Proton inclusion properties of a new azamacrocycle. Synthesis, characterization and crystal structure of [H3L][Cl]3·2H2O (L = 4, 10-dimethyl-1,4,7,10-tetraazabicyclo [5.5.2] tetradecane). Supramol. Chem. 3, 141–146 (1994)

    Article  CAS  Google Scholar 

  34. Nave, C., Truter, M.: Crystal structure of the dihydroperchlorate of 1, 4, 8, 11-tetra- azacyclotetradecane (cyclam). J. Chem. Soc. Dalton Trans. 21, 2351–2354 (1974)

    Article  Google Scholar 

  35. McAuley, A., Subramanian, S.: Formation of multinuclear complexes: new developments from cyclam derivatives. Coord. Chem. Rev. 200–202, 75–103 (2000)

    Article  Google Scholar 

  36. Subramanian, S., Barclay, T.M., Coulter, K.R., McAuley, A.: Synthesis and characterization of polymacrocyclic ligands and protonated ions. Coord. Chem. Rev. 245, 65–71 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank NSERC and the University of Victoria for support of this work. We also acknowledge the contribution of Mrs. K. Beveridge in the solution of the crystal structure of amide L6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. McAuley.

Additional information

Two new isomeric macrotricyclic ligands (L1) and (L2) have been prepared. L1 was prepared by reaction of the corresponding tetraazamacrobicycle with diglycolyl chloride in base, followed by reduction. Whereas, L2 was prepared by coupling of [10]aneN2O with chloroacetyl chloride in two steps followed by reduction. Crystals of the copper(II) complex of L1 showed the presence of two species within the unit cell: a) a five-coordinate ion with one of the [10]aneN2O units uncoordinated, and b) the distorted six-coordinate Cu(II) ion shown. The isomeric ion, [Cu(L2)]2+, based on bridging across the 1,11 and 4,8-N donors of the cyclam ring, shows only the five-coordinate form.

It is a pleasure to recognize the contributions to macrocyclic chemistry made by friend and colleague Len Lindoy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2011_9997_MOESM1_ESM.pdf

Crystal structure data (experimental, structure analysis parameters and methods, full list of bond length and angles), graphs showing statistical distribution of Cu–O distances for the 4-, 5- and 6-coordinate copper(II) complexes collected from Cambridge Structure Data base are available as supplementary materials. CIF file (CCDC 823433) for [Cu(L2)](ClO4)2·CH3NO2 is available from the Cambridge Data base. (PDF 1651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingham, A.I., McAuley, A., Subramanian, S. et al. Synthesis of the macrotricyclic ligands 8,18 dioxa-1,5,11,15-tetraaza-[13.5.2.25,11]-eicosane (L1) and 7,16 dioxa-1,4,10,13-tetraaza-[11.5.3.34,10]-octadecane (L2). Crystal structures of the copper(II) complexes, [Cu(L1)](ClO4)2 and [Cu(L2)](ClO4)2·CH3NO2 . J Incl Phenom Macrocycl Chem 71, 445–453 (2011). https://doi.org/10.1007/s10847-011-9997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9997-3

Keywords

Navigation