Skip to main content
Log in

Controlled release of volatile (−)-menthol in nanoporous silica materials

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, a series of nanoporous silica materials have been prepared as adsorbents for volatile (−)-menthol, a molecule widely used in food, pharmacy, and cosmetics. The isothermal release properties of (−)-menthol have been investigated and correlated with the structural parameters of nanoporous absorbents. A rotary evaporation method is used to effectively load (−)-menthol into the nanopores of adsorbents and to prevent the whisker growth during the adsorption. It is demonstrated that the pore size, structure, wall thickness and surface functionality of nanoporous adsorbents are four important parameters to influence the isothermal release of (−)-menthol. By tuning these parameters of nanoporous silica adsorbents, controlled release of (−)-menthol can be achieved. A vesicular silica material with thick wall and hydrophobic functional groups is shown to possess the slowest release performance. Our contribution provides important knowledge for the future applications of nanoporous silica materials in pharmacy and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karapinar, M., Aktug, S.E.: Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int. J. Food Microbiol. 4, 161–166 (1987)

    Article  Google Scholar 

  2. Yoshii, H., Sakane, A., Kawamura, D., Neoh, T.L., Kajiwara, H., Furuta, T.: Release kinetics of (−)-menthol from chewing gum. J. Incl. Phenom. Macrocycl. Chem. 57, 591–596 (2007)

    Article  CAS  Google Scholar 

  3. Gelal, A., Balkan, D., Ozzeybek, D., Kaplan, Y.C., Gurler, S., Guven, H., Benowitz, N.L.: Effect of menthol on the pharmacokinetics and pharmacodynamics of felodipine in healthy subjects. Eur. J. Clin. Pharmacol. 60, 785–790 (2005)

    Article  CAS  Google Scholar 

  4. Gelal, A., Jacob, P., Yu, L., Benowitz, N.L.: Disposition kinetics and effects of menthol. Clin. Pharmacol. Ther. 66, 128–135 (1999)

    Article  CAS  Google Scholar 

  5. Ortiz, G., Tena, M.T.: Headspace solid-phase microextraction gas chromatography-mass spectrometry method for the identification of cosmetic ingredients causing delamination of packagings. J. Chromatogr. A 1101, 32–37 (2006)

    Article  CAS  Google Scholar 

  6. Watson, H.R., Hems, R., Rowsell, D.G., Spring, D.J.: New compounds with menthol cooling effect. J. Soc. Cosmet. Chem. 29, 185–200 (1978)

    CAS  Google Scholar 

  7. Yuasa, H., Ooi, M., Takashima, Y., Kanaya, Y.: Whisker growth of l-menthol in coexistence with various excipients. Int. J. Pharm. 203, 203–210 (2000)

    Article  CAS  Google Scholar 

  8. Liu, X.D., Furuta, T., Yoshii, H., Linko, P., Coumans, W.J.: Cyclodextrin encapsulation to prevent the loss of l-menthol and its retention during drying. Biosci. Biotechnol. Biochem. 64, 1608–1613 (2000)

    Article  CAS  Google Scholar 

  9. Mortenson, M.A., Reineccius, G.A.: Encapsulation and release of menthol. Part 1: The influence of OSAn modification of carriers on the encapsulation of l-menthol by spray drying. Flavour Fragr. J. 23, 392–397 (2008)

    Article  CAS  Google Scholar 

  10. Mortenson, M.A., Reineccius, G.A.: Encapsulation and release of menthol. Part 2: Direct monitoring of l-menthol release from spray-dried powders made with OSAn-substituted dextrins and gum acacia. Flavour Fragr. J. 23, 407–415 (2008)

    Article  CAS  Google Scholar 

  11. Soottitantawat, A., Takayama, K., Okamura, K., Muranaka, D., Yoshii, H., Furuta, T., Ohkawara, M., Linko, P.: Microencapsulation of l-menthol by spray drying and its release characteristics. Innov. Food Sci. Emerg. Technol. 6, 163–170 (2005)

    Article  CAS  Google Scholar 

  12. Sansukcharearnpon, A., Wanichwecharungruang, S., Leepipatpaiboon, N., Kerdcharoen, T., Arayachukeat, S.: High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int. J. Pharm. 391, 267–273 (2010)

    Article  CAS  Google Scholar 

  13. Gorle, B.S.K., Smirnova, I., Mchugh, M.A.: Adsorption and thermal release of highly volatile compounds in silica aerogels. J. Supercrit. Fluids. 48, 85–92 (2009)

    Article  CAS  Google Scholar 

  14. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  15. Tao, Y.S., Kanoh, H., Abrams, L., Kaneko, K.: Mesopore-modified zeolites: preparation, characterization, and applications. Chem. Rev. 106, 896–910 (2006)

    Article  CAS  Google Scholar 

  16. Wang, S.B.: Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 117, 1–9 (2009)

    Article  CAS  Google Scholar 

  17. Asefa, T., Maclachlan, M.J., Coombs, N., Ozin, G.A.: Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999)

    CAS  Google Scholar 

  18. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., Terasaki, O.: Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 121, 9611–9614 (1999)

    Article  CAS  Google Scholar 

  19. Melde, B.J., Holland, B.T., Blanford, C.F., Stein, A.: Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem. Mater. 11, 3302–3308 (1999)

    Article  CAS  Google Scholar 

  20. Hubert, D.H.W., Jung, M., German, A.L.: Vesicle templating. Adv. Mater. 12, 1291–1294 (2000)

    Article  CAS  Google Scholar 

  21. Yu, M.H., Zhang, J., Yuan, P., Wang, H.N., Liu, N., Wang, Y.H., Yu, C.Z.: Preparation of siliceous vesicles with adjustable sizes, wall thickness, and shapes. Chem. Lett. 38, 442–443 (2009)

    Article  CAS  Google Scholar 

  22. Wang, H.N., Wang, Y.H., Zhou, X., Zhou, L., Tang, J., Lei, J., Yu, C.: Siliceous unilamellar vesicles and foams by using block-copolymer cooperative vesicle templating. Adv. Funct. Mater. 17, 613–617 (2007)

    Article  CAS  Google Scholar 

  23. Zhang, Y., Yu, M.H., Zhu, L., Zhou, X.F., Zhao, Q.F., Li, H.X., Yu, C.Z.: Organosilica multilamellar vesicles with tunable number of layers and sponge-like walls via one surfactant templating. Chem. Mater. 20, 6238–6243 (2008)

    Article  CAS  Google Scholar 

  24. Yu, M.H., Wang, H.N., Zhou, X.F., Yuan, P., Yu, C.Z.: One template synthesis of raspberry-like hierarchical siliceous hollow spheres. J. Am. Chem. Soc. 129, 14576–14577 (2007)

    Article  CAS  Google Scholar 

  25. Yu, M.H., Yuan, P., Zhang, J., Wang, H.N., Zhang, Y., Hu, Y.F., Wang, Y.H., Yu, C.Z.: A bioinspired route to various siliceous vesicular structures. J. Nanosci. Nanotechnol. 10, 612–615 (2010)

    Article  CAS  Google Scholar 

  26. Liu, J., Hartono, S.B., Jin, Y.G., Li, Z., Lu, G.Q., Qiao, S.Z.: A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. J. Mater. Chem. 20, 4595–4601 (2010)

    Article  CAS  Google Scholar 

  27. Yang, S., Zhao, L.Z., Yu, C.Z., Zhou, X.F., Tang, J.W., Yuan, P., Chen, D.Y., Zhao, D.Y.: On the origin of helical mesostructures. J. Am. Chem. Soc. 128, 10460–10466 (2006)

    Article  CAS  Google Scholar 

  28. Qiao, S.Z., Yu, C.Z., Xing, W., Hu, Q.H., Djojoputro, H., Lu, G.Q.: Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods. Chem. Mater. 17, 6172–6176 (2005)

    Article  CAS  Google Scholar 

  29. Zhao, X.S., Lu, G.Q.: Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J. Phys. Chem. B 102, 1556–1561 (1998)

    Article  CAS  Google Scholar 

  30. Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem. Eng. Sci. 46, 1895–1909 (1991)

    Article  CAS  Google Scholar 

  31. Zhang, J., Yu, M.H., Yuan, P., Wang, H.N., Qian, K., Tan, L., Wang, Y.H., Yu, C.Z.: Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source. J. Mater. Res. 25, 648–657 (2010)

    Article  CAS  Google Scholar 

  32. Su, Y.L., Wang, J., Liu, H.Z.: FTIR spectroscopic investigation of effects of temperature and concentration on PEO–PPO–PEO block copolymer properties in aqueous solutions. Macromolecules 35, 6426–6431 (2002)

    Article  CAS  Google Scholar 

  33. Dissanayake, M., Frech, R.: Infrared spectroscopic study of the phases and phase-transitions in poly(ethylene oxide) and poly(ethylene oxide)-lithium trifluoromethanesulfonate complexes. Macromolecules 28, 5312–5319 (1995)

    Article  CAS  Google Scholar 

  34. Muroya, M.: Correlation between the formation of silica skeleton structure and Fourier transform reflection infrared absorption spectroscopy spectra. Colloids Surf. A 157, 147–155 (1999)

    Article  CAS  Google Scholar 

  35. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., Mccullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  36. Yang, J., Zhou, L.A., Zhao, L.Z., Zhang, H.W., Yin, J.N., Wei, G.F., Qian, K., Wang, Y.H., Yu, C.Z.: A designed nanoporous material for phosphate removal with high efficiency. J. Mater. Chem. 21, 2489–2494 (2011)

    Article  CAS  Google Scholar 

  37. Yang, C.M., Liu, P.H., Ho, Y.F., Chiu, C.Y., Chao, K.J.: Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 15, 275–280 (2003)

    Article  CAS  Google Scholar 

  38. Sauer, J., Marlow, F., Spliethoff, B., Schuth, F.: Rare earth oxide coating of the walls of SBA-15. Chem. Mater. 14, 217–224 (2002)

    Article  CAS  Google Scholar 

  39. Andersson, J., Rosenholm, J., Areva, S., Linden, M.: Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 16, 4160–4167 (2004)

    Article  CAS  Google Scholar 

  40. Horcajada, P., Ramila, A., Perez-Pariente, J., Vallet-Regi, M.: Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 68, 105–109 (2004)

    Article  CAS  Google Scholar 

  41. Qu, F.Y., Zhu, G.S., Huang, S.Y., Li, S.G., Sun, J.Y., Zhang, D.L., Qiu, S.L.: Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater. 92, 1–9 (2006)

    Article  CAS  Google Scholar 

  42. Zhu, J., Tang, J.W., Zhao, L.Z., Zhou, X.F., Wang, Y.H., Yu, C.Z.: Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 6, 276–282 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Australian Research Council for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yu, M., Yuan, P. et al. Controlled release of volatile (−)-menthol in nanoporous silica materials. J Incl Phenom Macrocycl Chem 71, 593–602 (2011). https://doi.org/10.1007/s10847-011-9996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9996-4

Keywords

Navigation