Skip to main content
Log in

TD-DFT computations for trigonal silicon(IV) coordination compounds of rigid bidentates

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Computations using standard time dependent DFT (B3LYP/6-31G) can neither reproduce experimental CD spectra of optically active tris(2,4-pentanedionato)silicon(IV), [Si(acac)3]+, nor the CD of a series of similar coordination compounds of Si(IV). These compounds are characterized by exciton coupled ligand transitions which are not influenced by orbitals on the central ion. We have found that TD DFT calculations using long range functionals can indeed reproduce the measured CD satisfactorily. The detailed interpretations make use of D3 point group symmetry and symmetry adapted excited state functions allowing for the electronic coupling of the excitation of the ligands. Computations of similar problems for transition metal ions coordinated to rigid π systems are common and probably also sensitive to the choice of functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Larsen, E., Mason, S.F., Searle, G.H.: Absorption and circular dichroism spectra and absolute configuration of tris acetylacetonato silicon(IV) ion. Acta Chem. Scand. 20, 191–196 (1966)

    Article  CAS  Google Scholar 

  2. Dhar, S.K., Doron, V., Kirschner, S.: 6-Coordinate silicon(IV).2. The hydrolysis and racemization of the tris-(acetylacetonato)-silicon(IV) cation. J. Am. Chem. Soc. 81, 6372–6375 (1959)

    Article  CAS  Google Scholar 

  3. Ito, T., Tanaka, N., Hanazaki, I., Nagakura, S.: Absolute configuration and polarization of the ligand π* ← π transition of the tris(tropolonato)silicon(IV) ion. Inorg. Nucl. Chem. Lett. 5, 781–782 (1969)

    Article  CAS  Google Scholar 

  4. Adam, K.R., Atkinson, I.M., Lindoy, L.F.: Local density functional theory analysis of the structures and energies of the isomers of low-spin [Ni(cyclam)]2+. Inorg. Chem. 36, 480–481 (1997)

    Article  CAS  Google Scholar 

  5. Hambley T, Lindoy, L.F., Reimers, J.R., Turner, P., Wei, G., Widmer-Cooper, A.N.: Macrocyclic ligand design. X-Ray, DFT and solution studies of the effect of N-methylation an N-benzylation of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane on its affinity ofor selected transition and post-transition metal ions. Dalton Trans., 614–620 (2001)

  6. Heine, K.B., Clegg, J.K., Heine, A., Gloe, K., Henle, T., Bernhardt, G., Cai, Z.-L., Reimers, J.R., Lindoy, L.F., Lach, J., Kersting, B.: Complexation, computational, magnetic, and structural studies of the Maillard reaction product isomaltol including investigation of an uncommon πi interaction with copper(II). Inorg. Chem. 50, 1498–1505 (2011)

    Article  CAS  Google Scholar 

  7. Kapinos L.E., Operschall, B.P., Larsen, E., Sigel, H., Understanding the acid–base properties of adenosine. The intrinsic basicities of N1, N3, and N7. Eur. J. Chem. (2011). doi:10.1002/chem.201003544

  8. Thulstrup P.N., Broge L., Larsen E., Springborg J.: On the electronic structure and spectroscopic properties of a pseudo-tetrahedral cationic cobalt(II) tetraamine complex—([3(5)]adamanzane)cobalt(II). Dalton Trans., 3199–3204 (2003)

  9. Thulstrup P.W., Larsen E.: The electronic structure and spectra of spin-triplet ground state bis(biuretato)cobalt(III) coordination compounds. Dalton Trans.,1784–1789 (2006)

  10. Diedrich, C., Grimme, S.: Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J. Phys. Chem. A 107, 2524 (2003)

    Article  CAS  Google Scholar 

  11. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CT (2010)

    Google Scholar 

  12. Harnung, S.E., Ong, E.C., Weigang, O.E.: Low-resolution analysis of vibrational-electronic circular dichroism spectra. J. Chem. Phys. 55, 5711–5724 (1971)

    Article  CAS  Google Scholar 

  13. IUPAC: Nomenclature of Inorganic Chemistry. RCS Publishing Cambridge, Cambridge (2005)

    Google Scholar 

  14. Orgel, L.E.: Double bonding in chelated metal complexes. J. Chem. Soc., 3683–3686 (1961)

  15. Dilthey, W.: Über Siliciumverbindungen. Berichte 36, 923–930 (1903)

    CAS  Google Scholar 

  16. Fan, J., Seth, M., Autschbach, J., Ziegler, T.: Circular dichroism of trigonal dihedral chromium(III) complexes: a theoretical study based on open-shell time-dependent density functional theory. Inorg. Chem. 47, 11656–11668 (2008)

    Article  CAS  Google Scholar 

  17. Goerigk, L., Stefan, G.: Calculation of electronic CD spectra with time-dependent double-hybrid density functional theory. J. Phys. Chem. A 113, 767–776 (2009)

    Article  CAS  Google Scholar 

  18. Liu, H.L., Ohmori, Y., Kojima, M., Yoshikawa, Y.: Stereochemistry of six-coordinate octahedral silicon(IV) complexes containing 2,2′-bipyridine. J. Coord. Chem. 44, 257–268 (1998)

    Article  CAS  Google Scholar 

  19. Fan, J., Autschbach, J., Ziegler, T.: Electronic structure and circular dichroism of tris(bipyridyl) metal complexes within DFT. Inorg. Chem. 49, 1355–1362 (2010)

    Article  CAS  Google Scholar 

  20. Fan, J., Ziegler, T.: On the origin of circular dichroism in trigonal dihedral cobalt (III) complexes of unsaturated bidentate Ligands. Inorg. Chem. 47, 4762–4773 (2008)

    Article  CAS  Google Scholar 

  21. Kojima, M., Azuma, S., Hirotsu, M., Nakajima, K, Nanoyama, M., Yoshikawa, Y.: Optical Resolution of a six-coordinate silicon(IV) complex with a tripod hexadentate ligand. Chem. Lett. 482–483 (2000)

Download references

Acknowledgments

We wish to thank University of Copenhagen for giving us working conditions for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Larsen.

Additional information

Dedicated to Professor Leonard F. Lindoy, a pioneer of macrocyclic and supramolecular chemisttry, on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harnung, S.E., Larsen, E. TD-DFT computations for trigonal silicon(IV) coordination compounds of rigid bidentates. J Incl Phenom Macrocycl Chem 71, 419–428 (2011). https://doi.org/10.1007/s10847-011-9976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9976-8

Keywords

Navigation