Skip to main content
Log in

Molecular self-modification: homolog of a manganese laundry bleach catalyst oxidatively transforms its tetradentate ligand into a novel hexadentate derivative

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

On the basis of mass spectral studies alone, the relatively new manganese complex, Mn(Et2EBC)Cl2 (Et2EBC = 4,11-diethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), a homolog of the well proven, peroxide-based laundry bleach, Mn(Me2EBC)Cl2, has been reported to undergo a sequence of 2-electron oxidation steps, ultimately converting its ethyl groups into chelated ethoxo and methylene carboxylato groups, [MnIV{(OCH2CH2)(O2CCH2)}EBC)](PF6)2. We report here the isolation and characterization of that unusual product, and provide insight into the remarkable catalytic pathway to its formation. At temperatures above 0 °C, oxidation by aqueous H2O2 reliably transforms Mn(Et2EBC)Cl2 into [MnIV{(OCH2CH2)(O2CCH2)}EBC)]2+. The experimental data for this intramolecular ethyl group transformation is consistent with oxygen insertion into a methyl C–H moiety of the ethyl group, –NCH2C(–H)H2, by the MnIV–OOH functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yin, G., McCormick, J.M., Buchalova, M., Danby, A.M., Rodgers, K., Smith, K., Perkins, C., Kitko, D., Carter, J., Scheper, W.M., Busch, D.H.: Synthesis, characterization, and solution properties of a novel cross-bridged cyclam manganese(IV) complex having two terminal hydroxo ligands. Inorg Chem 45, 8052–8061 (2006)

    Article  CAS  Google Scholar 

  2. Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S.: Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004)

    Article  CAS  Google Scholar 

  3. Tommos, C., Babcock, G.T.: Oxygen production in nature: a light-driven metalloradical enzyme process. Acc. Chem. Res. 31, 18–25 (1998)

    Article  CAS  Google Scholar 

  4. Vrettos, J.S., Brudvig, G.W.: Oxygen evolution. In: Comprehensive coordination chemistry II. 8, 507–547 (2004)

  5. Pecoraro, V.L., Baldwin, M.J., Caudle, M.T., Hsieh, W., Law, N.A.: A proposal for water oxidation in photosystem II. Pure Appl. Chem. 70, 925–929 (1998)

    Article  CAS  Google Scholar 

  6. Yin, G., Buchalova, M., Danby, A.M., Perkins, C.M., David Kitko, D., Carter, J., Scheper, W.M., Busch, D.H.: Olefin oxygenation by the hydroperoxide adduct of a nonheme manganese(IV) complex: epoxidations by a metallo-peracid produces gentle selective oxidations. J. Am. Chem. Soc. 127, 17170–17171 (2005)

    Article  CAS  Google Scholar 

  7. Yin, G., Buchalova, M., Danby, A.M., Perkins, C.M., David Kitko, D., Carter, J., Scheper, W.M., Busch, D.H.: Olefin epoxidation by the hydrogen peroxide adduct of a novel non-heme mangangese(IV) complex: demonstration of oxygen transfer by multiple mechanisms. Inorg. Chem 45, 3467–3474 (2006)

    Article  CAS  Google Scholar 

  8. Yin, G., Danby, A.M., Kitko, D., Carter, J.D., Scheper, W.M., Busch, D.H.: Understanding the selectivity of a moderate oxidation catalyst: hydrogen abstraction by a fully characterized, activated catalyst, the robust dihydroxo manganese(IV) complex of a bridged cyclam. J. Am. Chem. Soc. 129, 1512–1513 (2007)

    Article  CAS  Google Scholar 

  9. Busch, D.H.; Collinson, S.R.; Hubin, T.J.; Labeque, R.; Williams, B.K.; Johnston, J.P.; Kitko, D.J.; St. Laurent, J.C.T.R.B.; Perkins, C.M. Bleach compositions containing metal bleach catalyst for detergents. WO 98/39406

  10. Busch, D.H.; Collinson, S.R.; Hubin, T.J. Catalysts and methods for catalytic oxidation. WO98/39098, 1998

  11. Yin, G.; Danby, A.M.; Day, V.R; Roy, S.B.; Carter, J.; Scheper, W.M.; Busch, D.H.: Similarities and differences in properties and behavior of two H2O2-activated manganese catalysts having structures differing only by methyl and ethyl substituents. J. Coordinat. Chem. 2011, 64(1), 4-17, 40th Anniversary Issue

    Google Scholar 

  12. Yu-LRan, Liu.: Bond dissociation energies in organic compounds. CRC Press, Boca Raton, FL (2003)

  13. Frey, P.A., Hegeman, A.D.: Enzymatic reaction mechanisms. Oxford University Press, New York (2007)

    Google Scholar 

  14. Vaz, D.N., McGinnity, D.F., Coon, M.J.: Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc. Natl. Acad. Sci. USA 95, 3555–3560 (1998)

    Article  CAS  Google Scholar 

  15. Newcomb, M., Aebisher, D., Shen, R., Chandrasena, R.E.P., Hollenberg, P.F., Coon, M.J.: Kinetic isotope effects implicate two electrophilic oxidants in cytochrome P450-catalyzed hydroxylations. J. Am. Chem. Soc. 125, 6064–6065 (2003)

    Article  CAS  Google Scholar 

  16. Toy, P.H., Newcomb, M., Coon, M.J., Vaz, A.D.N.: Two distinct electrophilic oxidants effect hydroxylation in cytochrome P-450-catalyzed reactions. J. Am. Chem. Soc. 120, 9718–9719 (1998)

    Article  CAS  Google Scholar 

  17. Bach, R.D., Su, M.D., Andres, J.L., Schlegel, H.B.: Structure and reactivity of diamidoiron(III) hydroperoxide. The mechanism of oxygen-atom transfer to ammonia. J. Am. Chem. Soc. 115, 8763–8769 (1993)

    Article  CAS  Google Scholar 

  18. Nam, W., Ho, R., Valentine, J.S.: Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol. J. Am. Chem. Soc. 113, 7052–7054 (1991)

    Article  CAS  Google Scholar 

  19. Sam, J.W., Tang, X.J., Peisach, J.: Electrospray mass spectrometry of iron bleomycin: demonstration that activated bleomycin is a ferric peroxide complex. J. Am. Chem. Soc. 116, 5250–5256 (1994)

    Article  CAS  Google Scholar 

  20. Ho, R.Y.N., Roelfes, G., Feringa, B.L., Que Jr., L.: Raman evidence for a weakened O−O bond in mononuclear low-spin iron(III)−hydroperoxidesJ. Am. Chem. Soc. 121, 264–265 (1999)

    Article  CAS  Google Scholar 

  21. Nam, W., Lim, M.H., Lee, H.J., Kim, C.: Evidence for the participation of two distinct reactive intermediates in iron(III) porphyrin complex-catalyzed epoxidation reactions. J. Am. Chem. Soc. 122, 6641–6647 (2000)

    Article  CAS  Google Scholar 

  22. Wadhwani, P., Mukherjee, M., Bandyopadhyay, D.: The prime reactive intermediate in the iron(III) porphyrin complex catalyzed oxidation reactions by tert-butyl hydroperoxide. J. Am. Chem. Soc. 123, 12430–12431 (2001)

    Article  CAS  Google Scholar 

  23. Kim, C., Chen, K., Kim, J., Que Jr., L.: Stereospecific alkane hydroxylation with H2O2 catalyzed by an iron(II)−tris(2-pyridylmethyl)amine complex. J. Am. Chem. Soc. 119, 5964–5965 (1997)

    Article  CAS  Google Scholar 

  24. Sano, S., Sano, T., Morishima, I., Shiro, Y., Maeda, Y.: On the mechanism of the chemical and enzymic oxygenations of α-oxyprotohemin IX to Fe-biliverdin IXα. Proc. Natl. Acad. Sci. USA 83, 531–535 (1986)

    Article  CAS  Google Scholar 

  25. Ortiz de Montellano, P.R.: Heme oxygenase mechanism: evidence for an electrophilic, ferric peroxide species. Acc. Chem. Res. 31, 543–549 (1998)

    Article  CAS  Google Scholar 

  26. Avila, L., Huang, H., Damaso, C.O., Lu, S., Moënne-Loccoz, P., Rivera, M.: Coupled oxidation vs. heme oxygenation: insights from axial ligand mutants of mitochondrial cytochrome b5. J. Am. Chem. Soc. 125, 4103 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Support by the Procter and Gamble Company is deeply appreciated, and we also thank the National Science Foundation Engineering Research Center Grant (EEC-0310689), at the University of Kansas, for partial support. At KU, MS analyses of the manganese(IV) complex under various conditions were performed under the guidance of R. C. Drake, and the crystal structure was determined by Dr Victor Day.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryle H. Busch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, G., Roy, S.B., Danby, A.M. et al. Molecular self-modification: homolog of a manganese laundry bleach catalyst oxidatively transforms its tetradentate ligand into a novel hexadentate derivative. J Incl Phenom Macrocycl Chem 71, 311–318 (2011). https://doi.org/10.1007/s10847-011-9974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9974-x

Keywords

Navigation