Solubilization and stabilization of fullerene C60 in presence of poly(vinyl pyrrolidone) molecules in water

  • M. Behera
  • S. RamEmail author
Short Communication


Solubilizing C60 molecules in an aqueous medium is highly imperative in processing them in different forms of ionic or nonionic liquids, nanofluids, films and other derivatives. In this investigation, we report a facile chemical route using polymer molecules of poly(vinyl pyrrolidone) (PVP) which mediate C60 molecules dissolving in water in a stable solution at room temperature. Poly(vinyl pyrrolidone) molecules, soluble in water as well as many organic liquids such as n-butanol, ethanol, or DMF, can be useful for transferring C60 molecules from a non-aqueous to an aqueous system. A broad optical absorption arises over 270–520 nm when C60 molecules are dissolved in water, 0.001–0.065 g/L in presence of 20–120 g/L PVP molecules. It consists of a strong π → π* absorption band (relatively sharp) lying at 294 nm in C(sp2) electrons from PVP-surface modified C60 molecules followed by a broad charge transfer band which extends up to 520 nm. Upon a suitable surface modification, the C60 molecules conquer enhanced optical absorption in both kinds of the bands. Dynamic light scattering reveals an average hydrodynamic length 181.5 nm and a polydispersity index 0.506 after a typical loading 0.065 g/L C60. A zeta potential −8.3 mV with a surface conductivity 0.064 mS/cm at 6.5 pH describes a negatively charged surface structure, showing an n-electron transfer from C=O (PVP) to a nanosurface in surface modified C60 molecules in a weak donor–acceptor complex. Water soluble C60 in presence of a biocompatible compound like PVP is useful for biological, medicinal, and other applications.


Carbon chemistry Fullerenes Nanofluids Nanosurfaces Composites 



This work is supported in parts from All India Council of Technical Education, New Delhi, Silicon Institute of Technology, Bhubaneswar, and the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE), Government of India.


  1. 1.
    Zhang, P., Lu, J., Xue, Q., Liu, W.: Microfrictional behavior of C60 particles in different C60 LB films studied by AFM/FFM. Langmuir 17, 2143–2145 (2001)CrossRefGoogle Scholar
  2. 2.
    Hwang, Y., Park, H.S., Lee, J.K., Jung, W.H.: Thermal conductivity and lubrication characteristics of nanofluids. Curr. Appl. Phys. 6S1, e67–e71 (2006)Google Scholar
  3. 3.
    Sudeep, P.K., Ipe, B.I., Thomas, K.G., George, M.V., Barrazouk, S., Hotchandani, S., Kamat, P.V.: Fullerene-functionalized gold nanoparticles A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2, 29–35 (2002)CrossRefGoogle Scholar
  4. 4.
    Sherigara, B.S., Kutner, W., D’Souza, F.: Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15, 753–772 (2003)CrossRefGoogle Scholar
  5. 5.
    Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., Shimmin, R.G.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99(0843089), 1–6 (2006)Google Scholar
  6. 6.
    Guldi, D.M., Prato, M.: Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 33, 695–703 (2000)CrossRefGoogle Scholar
  7. 7.
    Nakamura, E., Isobe, H.: Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003)CrossRefGoogle Scholar
  8. 8.
    Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., Masumizu, T., Nagano, T.: Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2- versus 1O2. J. Am. Chem. Soc. 125, 12803–12809 (2003)CrossRefGoogle Scholar
  9. 9.
    Yamakoshi, Y.N., Yagami, T., Fukuhara, K., Sueyoshi, S., Miyata, N.: Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun. 517–518 (1994)Google Scholar
  10. 10.
    Clements, A.F., Haley, J.E., Urbas, A.M., Kost, A., Rauh, R.D., Bertone, J.F., Wang, F., Wiers, B.M., Gao, D., Stefanik, T.S., Mott, A.G., Mackie, D.M.: Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution. J. Phys. Chem. A 113, 6437–6445 (2009)CrossRefGoogle Scholar
  11. 11.
    Furuishi, T., Ohmachi, Y., Fukami, T., Nagase, H., Suzuki, T., Endo, T., Ueda, H., Tomono, K.: Enhanced solubility of fullerene (C60) in water by inclusion complexation with cyclomaltonaose (δ-CD) using a cogrinding method. J. Incl. Phenom. Macrocycl. Chem. 67, 233–239 (2010)CrossRefGoogle Scholar
  12. 12.
    Vogt, P.M., Reimer, K., Hauser, J., Roßbach, O., Steinau, H.U., Bosse, B., Muller, S., Schmidt, T., Fleischer, W.: PVP-iodine in hydrosomes and hydrogel: a novel concept in wound therapy leads to enhanced epithelialization and reduced loss of skin grafts. Burns 32, 698–705 (2006)CrossRefGoogle Scholar
  13. 13.
    Rothschild, W.G.: Binding of hydrogen donors by peptide groups of lactams. Identity of the reaction sites. J. Am. Chem. Soc. 94, 8676–8683 (1972)CrossRefGoogle Scholar
  14. 14.
    Ungurenasu, C., Airinei, A.: Highly stable C60/poly(vinylpyrrolidone) charge-transfer complexes afford new predictions for biological applications of underivatized fullerenes. J. Med. Chem. 43, 3186–3188 (2000)CrossRefGoogle Scholar
  15. 15.
    Lyon, D.Y., Adams, L.K., Falkner, J.C., Alvarez, P.J.J.: Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40, 4360–4366 (2006)CrossRefGoogle Scholar
  16. 16.
    Popov, V.A., Tyunin, M.A., Zaitseva, O.B., Karaev, R.H., Sirotinkin, N.V., Dumpis, M.A., Piotrovsky, L.B.: C60/PVP complex: no toxicity after introperitoneal injection to rats. Fullerenes Nanotubes Carbon Nanostruct 16, 693–697 (2008)CrossRefGoogle Scholar
  17. 17.
    Butanols: four isomers. International programme on chemical safety, Environmental health criteria 65, World Health Organization, Geneva ISBN 92-4-154265-9. ( (1987). Accessed 21 Jan 2011
  18. 18.
    Scharff, P., Risch, K., Carta-Abelmann, L., Dmytruk, I.M., Bilyi, M.M., Golub, O.A., Khavryuchenko, A.V., Buzaneva, E.V., Aksenov, V.L., Avdeev, M.V., Prylutskyy, Y.I., Durov, S.S.: Structure of C60 fullerene in water: spectroscopic data. Carbon 42, 1203–1206 (2004)Google Scholar
  19. 19.
    Leach, S., Vervloet, M., Desprès, A., Bréheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., Walton, D.R.M.: Electronic spectra and transitions of the fullerene C60. Chem. Phys. 160, 451–466 (1992)CrossRefGoogle Scholar
  20. 20.
    Heymann, D.: Solubility of C60 in alcohols and alkanes. Carbon 34, 627–631 (1996)CrossRefGoogle Scholar
  21. 21.
    Rouff, R.S., Tse, D.S., Malhotra, R., Lorents, D.C.: Solubility of C60 in a variety of solvents. J. Phys. Chem. 97, 3379–3383 (1993)CrossRefGoogle Scholar
  22. 22.
    Wilson, E.B., Decius, J.C., Cross, P.C.: Molecular vibrations. McGraw-Hill, New York (1995)Google Scholar
  23. 23.
    Brant, J., Lecoanet, H., Hotze, M., Wiesner, M.: Comparision of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol. 39, 6343–6351 (2005)CrossRefGoogle Scholar
  24. 24.
    Borodko, Y., Habas, S.E., Koebel, M., Yang, P., Frei, H., Somorjai, G.A.: Probing the interaction of poly(vinyl pyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 110, 23052–23059 (2006)CrossRefGoogle Scholar
  25. 25.
    Borodko, Y., Humphrey, S.M., Don Tilley, T., Frei, H., Somorjai, G.A.: Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J. Phys. Chem. C 111, 6288–6295 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Materials Science Centre, Indian Institute of TechnologyKharagpurIndia

Personalised recommendations