Skip to main content
Log in

Solubilization and stabilization of fullerene C60 in presence of poly(vinyl pyrrolidone) molecules in water

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Solubilizing C60 molecules in an aqueous medium is highly imperative in processing them in different forms of ionic or nonionic liquids, nanofluids, films and other derivatives. In this investigation, we report a facile chemical route using polymer molecules of poly(vinyl pyrrolidone) (PVP) which mediate C60 molecules dissolving in water in a stable solution at room temperature. Poly(vinyl pyrrolidone) molecules, soluble in water as well as many organic liquids such as n-butanol, ethanol, or DMF, can be useful for transferring C60 molecules from a non-aqueous to an aqueous system. A broad optical absorption arises over 270–520 nm when C60 molecules are dissolved in water, 0.001–0.065 g/L in presence of 20–120 g/L PVP molecules. It consists of a strong π → π* absorption band (relatively sharp) lying at 294 nm in C(sp2) electrons from PVP-surface modified C60 molecules followed by a broad charge transfer band which extends up to 520 nm. Upon a suitable surface modification, the C60 molecules conquer enhanced optical absorption in both kinds of the bands. Dynamic light scattering reveals an average hydrodynamic length 181.5 nm and a polydispersity index 0.506 after a typical loading 0.065 g/L C60. A zeta potential −8.3 mV with a surface conductivity 0.064 mS/cm at 6.5 pH describes a negatively charged surface structure, showing an n-electron transfer from C=O (PVP) to a nanosurface in surface modified C60 molecules in a weak donor–acceptor complex. Water soluble C60 in presence of a biocompatible compound like PVP is useful for biological, medicinal, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhang, P., Lu, J., Xue, Q., Liu, W.: Microfrictional behavior of C60 particles in different C60 LB films studied by AFM/FFM. Langmuir 17, 2143–2145 (2001)

    Article  CAS  Google Scholar 

  2. Hwang, Y., Park, H.S., Lee, J.K., Jung, W.H.: Thermal conductivity and lubrication characteristics of nanofluids. Curr. Appl. Phys. 6S1, e67–e71 (2006)

    Google Scholar 

  3. Sudeep, P.K., Ipe, B.I., Thomas, K.G., George, M.V., Barrazouk, S., Hotchandani, S., Kamat, P.V.: Fullerene-functionalized gold nanoparticles A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2, 29–35 (2002)

    Article  CAS  Google Scholar 

  4. Sherigara, B.S., Kutner, W., D’Souza, F.: Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15, 753–772 (2003)

    Article  CAS  Google Scholar 

  5. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., Shimmin, R.G.: Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99(0843089), 1–6 (2006)

    Google Scholar 

  6. Guldi, D.M., Prato, M.: Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 33, 695–703 (2000)

    Article  CAS  Google Scholar 

  7. Nakamura, E., Isobe, H.: Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003)

    Article  CAS  Google Scholar 

  8. Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., Masumizu, T., Nagano, T.: Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2- versus 1O2. J. Am. Chem. Soc. 125, 12803–12809 (2003)

    Article  CAS  Google Scholar 

  9. Yamakoshi, Y.N., Yagami, T., Fukuhara, K., Sueyoshi, S., Miyata, N.: Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J. Chem. Soc. Chem. Commun. 517–518 (1994)

  10. Clements, A.F., Haley, J.E., Urbas, A.M., Kost, A., Rauh, R.D., Bertone, J.F., Wang, F., Wiers, B.M., Gao, D., Stefanik, T.S., Mott, A.G., Mackie, D.M.: Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution. J. Phys. Chem. A 113, 6437–6445 (2009)

    Article  CAS  Google Scholar 

  11. Furuishi, T., Ohmachi, Y., Fukami, T., Nagase, H., Suzuki, T., Endo, T., Ueda, H., Tomono, K.: Enhanced solubility of fullerene (C60) in water by inclusion complexation with cyclomaltonaose (δ-CD) using a cogrinding method. J. Incl. Phenom. Macrocycl. Chem. 67, 233–239 (2010)

    Article  CAS  Google Scholar 

  12. Vogt, P.M., Reimer, K., Hauser, J., Roßbach, O., Steinau, H.U., Bosse, B., Muller, S., Schmidt, T., Fleischer, W.: PVP-iodine in hydrosomes and hydrogel: a novel concept in wound therapy leads to enhanced epithelialization and reduced loss of skin grafts. Burns 32, 698–705 (2006)

    Article  CAS  Google Scholar 

  13. Rothschild, W.G.: Binding of hydrogen donors by peptide groups of lactams. Identity of the reaction sites. J. Am. Chem. Soc. 94, 8676–8683 (1972)

    Article  CAS  Google Scholar 

  14. Ungurenasu, C., Airinei, A.: Highly stable C60/poly(vinylpyrrolidone) charge-transfer complexes afford new predictions for biological applications of underivatized fullerenes. J. Med. Chem. 43, 3186–3188 (2000)

    Article  CAS  Google Scholar 

  15. Lyon, D.Y., Adams, L.K., Falkner, J.C., Alvarez, P.J.J.: Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40, 4360–4366 (2006)

    Article  CAS  Google Scholar 

  16. Popov, V.A., Tyunin, M.A., Zaitseva, O.B., Karaev, R.H., Sirotinkin, N.V., Dumpis, M.A., Piotrovsky, L.B.: C60/PVP complex: no toxicity after introperitoneal injection to rats. Fullerenes Nanotubes Carbon Nanostruct 16, 693–697 (2008)

    Article  CAS  Google Scholar 

  17. Butanols: four isomers. International programme on chemical safety, Environmental health criteria 65, World Health Organization, Geneva ISBN 92-4-154265-9. (http://www.inchem.org/documents/ehc/ehc/ehc65.htm) (1987). Accessed 21 Jan 2011

  18. Scharff, P., Risch, K., Carta-Abelmann, L., Dmytruk, I.M., Bilyi, M.M., Golub, O.A., Khavryuchenko, A.V., Buzaneva, E.V., Aksenov, V.L., Avdeev, M.V., Prylutskyy, Y.I., Durov, S.S.: Structure of C60 fullerene in water: spectroscopic data. Carbon 42, 1203–1206 (2004)

    Google Scholar 

  19. Leach, S., Vervloet, M., Desprès, A., Bréheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., Walton, D.R.M.: Electronic spectra and transitions of the fullerene C60. Chem. Phys. 160, 451–466 (1992)

    Article  CAS  Google Scholar 

  20. Heymann, D.: Solubility of C60 in alcohols and alkanes. Carbon 34, 627–631 (1996)

    Article  CAS  Google Scholar 

  21. Rouff, R.S., Tse, D.S., Malhotra, R., Lorents, D.C.: Solubility of C60 in a variety of solvents. J. Phys. Chem. 97, 3379–3383 (1993)

    Article  Google Scholar 

  22. Wilson, E.B., Decius, J.C., Cross, P.C.: Molecular vibrations. McGraw-Hill, New York (1995)

    Google Scholar 

  23. Brant, J., Lecoanet, H., Hotze, M., Wiesner, M.: Comparision of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol. 39, 6343–6351 (2005)

    Article  CAS  Google Scholar 

  24. Borodko, Y., Habas, S.E., Koebel, M., Yang, P., Frei, H., Somorjai, G.A.: Probing the interaction of poly(vinyl pyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 110, 23052–23059 (2006)

    Article  CAS  Google Scholar 

  25. Borodko, Y., Humphrey, S.M., Don Tilley, T., Frei, H., Somorjai, G.A.: Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J. Phys. Chem. C 111, 6288–6295 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in parts from All India Council of Technical Education, New Delhi, Silicon Institute of Technology, Bhubaneswar, and the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behera, M., Ram, S. Solubilization and stabilization of fullerene C60 in presence of poly(vinyl pyrrolidone) molecules in water. J Incl Phenom Macrocycl Chem 72, 233–239 (2012). https://doi.org/10.1007/s10847-011-9957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9957-y

Keywords

Navigation