Skip to main content
Log in

A novel colorimetric and fluorometric anion sensor based on BODIPY-calix[4]pyrrole conjugate

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A novel fluorescent anion sensor 1 based on boradiazaindacenes (BODIPY) derivative was synthesized and its absorption and fluorescence properties were investigated in various solvents. 1 exhibited a red shift of absorption spectrum and fluorescence quenching in varying degree in the presence of F, AcO, H2PO4 and Cl due to multiple hydrogen bonding interactions between these anions and calix[4]pyrrole receptor. As an anion sensor in the visible region, 1 displayed the similar selectivity and sensitivity toward anions compared to the parent calix[4]pyrrole. However, 1 can be used as an effective dual responsive optical sensor for F via chromogenical and fluorogenical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gale, P.A., Garcia-Garrido, S.E., Garric, J.: Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev. 37, 151–190 (2008)

    Article  CAS  Google Scholar 

  2. Steed, J.W.: Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev. 38, 506–519 (2009)

    Article  CAS  Google Scholar 

  3. Caltagirone, C., Gale, P.A.: Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev. 38, 520–563 (2009)

    Article  CAS  Google Scholar 

  4. Kubik, S.: Amino acid containing anion receptors. Chem. Soc. Rev. 38, 585–605 (2009)

    Article  CAS  Google Scholar 

  5. Amendola, V., Fabbrizzi, L.: Anion receptors that contain metals as structural units. Chem. Commun. 5, 513–531 (2009)

    Article  Google Scholar 

  6. Loudet, A., Burgess, K.: BODIPY dyes and their derivatives: synthesis and spectroscopic properties. Chem. Rev. 107, 4891–4932 (2007) and references therein

    Google Scholar 

  7. Ulrich, G., Ziessel, R., Harriman, A.: The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew. Chem. Int. Ed. 47, 1184–1201 (2008)

    Article  CAS  Google Scholar 

  8. Coskun, A., Baytekin, B.T., Akkaya, E.U.: Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fole enhancement of emission. Terahedron Lett. 44, 5649–5651 (2003)

    Article  CAS  Google Scholar 

  9. Ekmekci, Z., Yilmaz, M.D., Akkaya, E.U.: A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org. Lett. 10, 461–464 (2008)

    Article  CAS  Google Scholar 

  10. Shiraishi, Y., Maehhara, H., Sugii, T., Wang, D., Hirai, T.: A BODIPY-indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Lett. 50, 4293–4296 (2009)

    Article  CAS  Google Scholar 

  11. Gale, P.A., Sessler, J.L., Král, V.: Calixpyrroles. Chem. Commun. 1, 1–8 (1998)

    Article  Google Scholar 

  12. Gale, P.A., Anzenbacher, J.P., Sessler, J.L.: Calix[4]pyrroles II. Coordination Chem.Rev. 222, 57–102 (2001) and references therein

  13. Lee, C.H., Miyaji, H., Yoon, D.W., Sessler, J.L.: Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. Chem. Commun. 1, 24–34 (2008)

    Article  Google Scholar 

  14. Miyaji, H., Anzenbacher, P.J., Sessler, J.L., Bleasdale, E.R., Gale, P.A.: Anthracene-linked calix[4]pyrroles: fluorescent chemosensors for anions. Chem. Commun. 17, 1723–1724 (1999)

    Article  Google Scholar 

  15. Anzenbacher, J.P., Jursíková, K., Sessler, J.L.: Second generation calixpyrrole anion sensors. J. Am. Chem. Soc. 122, 9350–9351 (2000)

    Article  CAS  Google Scholar 

  16. Miyaji, H., Sato, W., Sessler, J.L.: Naked-eye detection of anions in dichloromethane: colorimetric anion sensors based on calix[4]pyrrole. Angew. Chem. Int. Ed. 39, 1777–1780 (2000)

    Article  CAS  Google Scholar 

  17. Zhang, X., Xiao, Y., Qian, X.: Highly efficient energy transfer in the light harvesting system composed of three kinds of boron-dipyrromethene derivatives. Org. Lett. 10, 29–32 (2008)

    Article  Google Scholar 

  18. Nishiyabu, R., Anzenbacher, J.P.: 1,3-Indane-based chromogenic calixpyrroles with push–pull chromophores: synthesis and anion sensing. Org. Lett. 8, 359–362 (2006)

    Article  CAS  Google Scholar 

  19. Kollmannsberger, M., Rurack, K., Resch-Genger, U., Daub, J.: Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J. Phys. Chem. A 102, 10211–10220 (1998)

    Article  CAS  Google Scholar 

  20. Sunahara, H., Urano, Y., Kojima, H., Nagano, T.: Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. J. Am. Chem. Soc. 129, 5597–5604 (2007)

    Article  CAS  Google Scholar 

  21. Rurack, K., Kollmannsberger, M., Daub, J.: Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye. Angew. Chem. Int. Ed. 40, 385–387 (2001)

    Article  CAS  Google Scholar 

  22. Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., Xu, J., Liu, H., Wang, S., Zhu, D.: A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule. Org. Lett. 9, 2313–2316 (2007)

    Article  CAS  Google Scholar 

  23. Miyaji, H., Sato, W., Sessler, J.L., Lynch, V.M.: A ‘building block’ approach to functionalized calix[4]pyrroles. Tetrahedron Lett. 41, 1369–1373 (2000)

    Article  CAS  Google Scholar 

  24. Nishiyabu, R., Anzenbacher, P.J.: Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J. Am. Chem. Soc. 127, 8270–8271 (2005)

    Article  CAS  Google Scholar 

  25. Coskun, A., Akkaya, E.U.: Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chenosensor for Ag (I) by a modular approach. J. Am. Chem. Soc. 127, 10464–10465 (2005)

    Article  CAS  Google Scholar 

  26. Baruah, M., Qin, W., Flors, C., Hofkens, J., Vallée, R.A.L., Beljonne, D., Auweraer, M.V., Borggraeve, W.M.D., Boens, N.: Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyyromethenen dye in solution. J. Phys. Chem. A 110, 5998–6009 (2006)

    Article  CAS  Google Scholar 

  27. Casey, K.G., Quitevis, E.L.: Effect of solvent polarity on nonradiative processes in xanthene dyes: rhodamine b in normal alcohols. J. Phys. Chem. 92, 6590–6594 (1988)

    Article  CAS  Google Scholar 

  28. Almonasy, N., Nepraš, M., Hyková, Š., Lyčka, A., Čermák, J., Dvořák, M., Michl, M.: The synthesis of N-derivatives of 3-aminoperylene and their absorption and fluorescence properties. Dyes Pigment. 82, 164–170 (2009)

    Article  CAS  Google Scholar 

  29. Tian, M., Peng, X., Feng, F., Meng, S., Fan, J., Sun, S.: Fluorescent pH probes based on boron dipyrromethene dyes. Dyes Pigment. 81, 58–62 (2009)

    Article  CAS  Google Scholar 

  30. Conners, K.A.: Binding Constants: The Measurement of Molecular Complex Stability. Wiley, New York (1987)

    Google Scholar 

  31. Gale, P.A., Sessler, J.L., Allen, W.E., Tvermoes, N.A., Lynch, V.: Calix[4]pyrroles: C-rim substitution and tenability of anion binding strength. Chem. Commun. 7, 665–666 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 20972170 to S-J. Shao), the open fund of State Key Laboratory of Oxo Synthesis & Selective Oxidation (Grant No. OSSO2008kjk6 to S-J. Shao) and by the Natural Science Foundation of Gansu province (No. 096RJ2A033 to Y. Guo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

UV–vis titration of sensor 1 (1 × 10−5 M in CH3CN) upon the addition of AcO from 0 to 2.08 × 10−4 M. Inset: Nonlinear curve fitting as a function of [AcO]. (TIFF 1143 kb)

Fig. S2

UV–vis titration of sensor 1 (1 × 10−5 M in CH3CN) upon the addition of H2PO4 from 0 to 3.2 × 10−4 M. Inset: Nonlinear curve fitting as a function of [H2PO4 ]. (TIFF 1152 kb)

Fig. S3

UV–vis titration of sensor 1 (1 × 10−5 M in CH3CN) upon the addition of Cl from 0 to 1.12 × 10−3 M. Inset: Nonlinear curve fitting as a function of [Cl]. (TIFF 1060 kb)

Fig. S4

Changes in the emission spectrum of 1 (5 × 10−6 M in CH3CN) upon the addition of AcO from 0 to 3.2 × 10−4 M. Inset: Nonlinear curve fitting as a function of [AcO] monitored at 626 nm. Excitation was at 587 nm. (TIFF 658 kb)

Fig. S5

Changes in the emission spectrum of 1 (5 × 10−6 M in CH3CN) upon the addition of H2PO4 from 0 to 8.48 × 10−4 M. Inset: Nonlinear curve fitting as a function of [H2PO4 ] monitored at 626 nm. Excitation was at 587 nm. (TIFF 892 kb)

Fig. S6

Changes in the emission spectrum of 1 (5 × 10−6 M in CH3CN) upon the addition of Cl from 0 to 1.52 × 10−3 M. Inset: Nonlinear curve fitting as a function of [Cl] monitored at 626 nm. Excitation was at 587 nm. (TIFF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

lv, Y., Xu, J., Guo, Y. et al. A novel colorimetric and fluorometric anion sensor based on BODIPY-calix[4]pyrrole conjugate. J Incl Phenom Macrocycl Chem 72, 95–101 (2012). https://doi.org/10.1007/s10847-011-9946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9946-1

Keywords

Navigation