Skip to main content
Log in

Fluorescence signaling of aromatic oxoanion inclusion within metal-ion activated molecular receptor complexes formed from 2-(9-anthracenylmethylamino)ethyl-appended cyclen

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Our observations that 1-[2-[(9-anthracenylmethylamino)ethyl)-4,7,10-tris[(2S)-2-hydroxy-3-phenoxypropyl]-1,4,7,10-tetraazacyclododecane, L1, complexes Cd(II) to form fluorescent [CdL1]2+ which undergoes a fluorescence change when it acts as an aromatic anion receptor complex has caused us to explore further the potential development of an interesting sequestration/sensor system. Accordingly, three new, octadentate, fluorescent, macrocyclic ligands, 1-[2-[(9-anthracenylmethyl)((2S)-2-hydroxy-3-phenoxypropyl)amino]ethyl]-4,7,10-tris[(2S)-2-hydroxy-3-phenoxypropyl]-1,4,7,10-tetraazacyclododecane, (L2), 1-[2-[(9-anthracenyl-methyl)((2S)-2-hydroxy-3-(4′-methyl)phenoxypropyl)amino]ethyl]-4,7,10-tris[(2S)-2-hydroxy-3-(4′-methyl)phenoxypropyl]-1,4,7,10-tetraazacyclododecane, (L3), and 1-[2-[(9-anthracenylmethyl)((2S)-2-hydroxy-3-(4′-t-butyl)phenoxypropyl)amino]ethyl]-4,7,10-tris[(2S)-2-hydroxy-3-(4′-t-butyl)phenoxypropyl]-1,4,7,10-tetraazacyclododecane, (L4), have been prepared with a view to using their metal complexes to study aromatic anion sequestration. The eight-coordinate Cd(II) complexes of L2 and L3, [CdL2](ClO4)2·5H2O and [CdL3](ClO4)2·2H2O·2Et2O are both capable of acting as receptors for a range of aromatic oxoanions. This is demonstrated by perturbation of the anthracene derived fluorescence emission intensity as the guest aromatic oxoanion and the receptor complex combine. In 20% aqueous 1,4-dioxane the receptor complex/aromatic oxoanion association constants are in the range of 103.2 M−1 (guest = p-hydroxybenzoate) to 107.3 M−1 (guest = 3,4,5-trihydroxybenzoate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith, C.B., Wallwork, K.S., Weeks, J.M., Buntine, M.A., Lincoln, S.F., Taylor, M.R., Wainwright, K.P.: Metal ion dependent molecular inclusion chemistry:inclusion of p-toluenesulfonate and p-nitrophenolate within the structure of coordinated 1, 4, 7, 10-tetrakis((S)-2-hydroxy-3-phenoxypropyl)-1, 4, 7, 10-tetraazacyclododecane. Inorg. Chem. 38, 4986–4992 (1999)

    Article  CAS  Google Scholar 

  2. Wainwright, K.P.: Applications for polyaza macrocycles with nitrogen-attached pendant arms. Adv. Inorg. Chem. 52, 293–334 (2001)

    Article  CAS  Google Scholar 

  3. Smith, C.B., Stephens, A.K.W., Wallwork, K.S., Lincoln, S.F., Taylor, M.R., Wainwright, K.P.: Metal ion-dependent molecular inclusion chemistry:inclusion of aromatic anions by coordinated 1, 4, 7, 10-tetrakis((S)-2-hydroxy-3-phenoxypropyl)-1, 4, 7, 10-tetraazacyclododecane. Inorg. Chem. 41, 1093–1100 (2002)

    Article  CAS  Google Scholar 

  4. Robinson, T.S., Wyness, O., Lincoln, S.F., Taylor, M.R., Tiekink, E.R.T., Wainwright, K.P.: A structural study of the synergic envelopment of acetonitrile by a Cd(II) activated molecular receptor formed from cyclen with appended 2-hydroxy-3-phenylpropyl moieties. Inorg. Chim. Acta 359, 1413–1420 (2006)

    Article  CAS  Google Scholar 

  5. Damsyik, A., Lincoln, S.F., Wainwright, K.P.: Synthesis and characterisation of water-operative cationic and anionic metal-ion activated molecular receptors for aromatic anions. Inorg. Chem. 45, 9834–9842 (2006)

    Article  CAS  Google Scholar 

  6. Bradbury, A.J., Lincoln, S.F., Wainwright, K.P.: Fluorescent signalling provides deeper insight into aromatic anion uptake by metal ion activated molecular receptors. New J. Chem. 32, 1500–1508 (2008)

    Article  CAS  Google Scholar 

  7. Hodyl, J.A.Z., Lincoln, S.F., Wainwright, K.P.: Silica-attached molecular receptor complexes for benzoates and naphthoates. J. Incl. Phenom. Macrocycl. Chem. 68, 261–270 (2010)

    Article  CAS  Google Scholar 

  8. Jeffrey, G.A.: An Introduction to Hydrogen Bonding. Oxford University Press, Oxford (1997)

    Google Scholar 

  9. Plush, S.E., Lincoln, S.F., Wainwright, K.P.: Fluorescent ligands derived from 2-(9-anthrylmethylamino)ethyl-appended cyclen for use in metal ion activated molecular receptors. Inorg. Chim. Acta. 362, 3097–3103 (2009)

    Article  CAS  Google Scholar 

  10. Aoki, S., Kaido, S., Fujioka, H., Kimura, E.: A new zinc(II) fluorophore 2-(9-anthrylmethylamino)ethyl-appended 1, 4, 7, 10-tetraazacyclododecane. Inorg. Chem. 42, 1023–1030 (2003)

    Article  CAS  Google Scholar 

  11. Geue, J.P., Head, N.J., Ward, A.D., Lincoln, S.F.: Complexation of alkali metal and alkaline earth metal ions by anthracene based fluorophores with one and two appended monoaza coronand receptors. J. Chem. Soc. Dalton Trans. 4, 521–526 (2003)

    Google Scholar 

  12. March, J.: Advanced Organic Chemistry, 3rd edn, p. 234. Wiley-Interscience, New York (1985)

    Google Scholar 

  13. Akkaya, E.U., Huston, M.E., Czarnik, A.W.: Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J. Am. Chem. Soc. 112, 3590–3593 (1990)

    Article  CAS  Google Scholar 

  14. Huang, X., Lu, Y., He, Y., Chen, Z.: A metal-macrocycle complex as a fluorescent sensor for biological phosphate ions in aqueous solution. Eur. J. Org. Chem. 2010, 1921–1927 (2010)

  15. Ji, H., Dabestani, R., Brown, G.M., Hettich, R.L.: Synthesis and sensing behaviour of cyanoanthracene modified 1, 3-alternate calix[4]benzocrown-6: a new class of Cs + selective optical sensors. J. Chem. Soc. Perkin Trans. 2, 585–591 (2001)

    Google Scholar 

  16. Xu, H., Xu, X., Dabestani, R., Brown, G.M., Fan, L., Patton, S., Ji, H.: Supramolecular fluorescent probes for the detection of mixed alkali metal ions that mimic the function of integrated logic gates. J. Chem. Soc. Perkin Trans. 2, 636–643 (2002)

    Google Scholar 

  17. De Santis, G., Fabbrizzi, L., Licchelli, M., Taglietti, A.: Molecular recognition of carboxolate ions based on metal-ligand interaction and signalled through fluorescence quenching. Angew. Chem. Int. Ed. Engl. 35, 202–204 (1996)

    Article  Google Scholar 

  18. Callan, J.F., De Silva, A.P., McClenaghan, N.D.: Switching between molecular switch types by module rearrangement: Ca2+-enabled, H+-driven ‘Off-On-Off’, H+-driven YES and PASS 0 as well as H+, Ca2+-driven AND logic operations. Chem. Commun. 40, 2048–2049 (2004)

    Google Scholar 

  19. Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of Laboratory Chemicals, 3rd edn. Pergamon, Oxford (1988)

    Google Scholar 

  20. Demas, J.N., Crosby, G.A.: The measurement of photoluminescent quantum yields. A review. J. Phys. Chem. 75, 991–1024 (1971)

    Article  Google Scholar 

Download references

Acknowledgment

Funding of this study by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Wainwright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradbury, A.J., Lincoln, S.F. & Wainwright, K.P. Fluorescence signaling of aromatic oxoanion inclusion within metal-ion activated molecular receptor complexes formed from 2-(9-anthracenylmethylamino)ethyl-appended cyclen. J Incl Phenom Macrocycl Chem 71, 567–575 (2011). https://doi.org/10.1007/s10847-011-9924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9924-7

Keywords

Navigation