Skip to main content
Log in

The digestable parent cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The enzymatic digestibility of parent γ-cyclodextrin by human saliva α-amylase was investigated aiming at the determination of lifespan of intact macro ring. It was found that the ring-opening reaction was the slowest step of the γ-cyclodextrin degradation process. The reaction products were mainly maltose and malto-triose, while no higher malto-oligomers were detected. The enzymatic degradation of γ-cyclodextrin reduces the possibility of influencing bioavailability of nutritional lipophiles or drug actives co-administered with γ-cyclodextrin as an excipient or additive. Though there are numerous papers on the ring opening of cyclodextrins by amylases and the same capability of the human α-amylase is expected now we prove this activity. The hydrolysis reaction was followed by direct measurement of the resulting maltose and malto-triose, for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Szejtli, J.: Past, present, and future of cyclodextrin research. Pure. Appl. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  3. Szente, L., Harangi, J., Greiner, M., Mandel, F.: Cyclodextrins found in enzyme- and heat-processed starch-containing foods. Chem. Biodiv. 3, 1004–1014 (2006)

    Article  CAS  Google Scholar 

  4. Marshall, J.J., Miwa, I.: Kinetic difference between hydrolyses of gamma-cyclodextrin by human salivary and pancreatic alpha-amylases. Biochim. Biophys. Acta. 661(1), 142–147 (1981)

    CAS  Google Scholar 

  5. Allerge, M., Deratani, A.: Cyclodextrin uses: from concept to industrial reality. Agro. Food Ind. Hi-Tech. 5(1), 9–17 (1994)

    Google Scholar 

  6. Munro, I.C., Newberne, P.M., Young, V.R., Bar, A.: Safety assessment of γ-cyclodextrin. Regul. Toxicol. Pharmacol. 39, S3–S13 (2004)

    Article  CAS  Google Scholar 

  7. Kondo, H., Nakatani, H., Hiromi, K.: In vitro action of human and porcine α-amylases on cyclomalto-oligosaccharides. Carbohydr. Res. 204, 207–213 (1990)

    Article  CAS  Google Scholar 

  8. DeBie, A.T., van Ommen, B., Bar, A.: Disposition of 14C-gamma-cyclodextrin in germ-free and conventional rats. Regul. Toxicol. Pharmacol. 27(2), 150–158 (1998)

    Article  CAS  Google Scholar 

  9. Jodál, I., Kandra, L., Harangi, J., Nánási, P., Szejtli, J.: Hydrolysis of cyclodextrin by Aspergillus oryzae α-amylase. Starch 36, 140–143 (1984)

    Article  Google Scholar 

  10. Jodál, I., Harangi, J., Lipták, A., Nánási, P., Szejtli, J.: Degradation of Cyclodextrins with Aspergilus-oryzae α-amylase. Acta Biochim. Biophys. Hung. 17(1–2), 102-102 (1982)

    Google Scholar 

  11. Kandra, L., Gyémánt, G.: Examination of the active sites of human salivary α-amylase (HSA). Carbohydr. Res. 329, 579–585 (2000)

    Article  CAS  Google Scholar 

  12. Kandra, L., Gyémánt, G., Remenyik, J., Hovánszki, G., Lipták, A.: Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates. FEBS. Lett. 518, 79–82 (2002)

    Article  CAS  Google Scholar 

  13. Kandra, L., Gyémánt, G., Lipták, A.: Action pattern of α-amylases on modified maltooligosaccharides. Biologia 57(suppl 11), 171–180 (2002)

    CAS  Google Scholar 

  14. Gyémánt, G., Hovánszky, G., Kandra, L.: Subsite mapping of the binding region of alpha-amylases with a computer program. Eur. J. Biochem. FEBS. 269, 5157–5162 (2002)

    Article  Google Scholar 

  15. Robyt, J.F.: Inhibition, activation, and stabilization of α-amylase family enzymes. Biologia 60(suppl 16), 17–26 (2005)

    CAS  Google Scholar 

  16. Asp, M.L., Hertzler, S.R., Chow, J., Wolf, B.W.: Gamma-cyclodextrin lowers postprandial glycemia and insulinemia without carbohydrate malabsorption in healthy adults. J. Am. Coll. Nutr. 25(1), 49–55 (2006)

    CAS  Google Scholar 

  17. Buedenbender, S., Schulz, G.E.: Structural base for enzymatic cyclodextrin hydrolysis. J. Mol. Biol. 385, 606–617 (2009)

    Article  CAS  Google Scholar 

  18. Mótyán, J.A., Gyémánt, G., Harangi, J., Bagossi, P.: Computer-aided subsite mapping of α-amylases. Carbohydr. Res. 346, 410–415 (2011)

    Article  Google Scholar 

  19. Jodál, I., Harangi, J., Nánási, P., Szejtli, J.: Preparation of maltooligomers by controlled enzymatic hydrolysis. Acta. Biochim. Biophys. Hung. 19(1–2), 141-141 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Harangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harangi, J., Béke, G., Harangi, M. et al. The digestable parent cyclodextrin. J Incl Phenom Macrocycl Chem 73, 335–339 (2012). https://doi.org/10.1007/s10847-011-0061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0061-0

Keywords

Navigation