Skip to main content
Log in

Intercalation behaviors of chiral titanium(IV) (triethanolaminato)-isopropoxide (Ti(C2H4O)3N(OCH(CH3)2) in protonated lamellar metal oxides and characterization of the intercalated resultants

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The intercalation behaviors of chiral titanium(IV) (triethanolaminato)-isopropoxide (the chemical formula is Ti(C2H4O)3N(OCH(CH3)2), abbreviated as TEAIP) in a series of layered protonated metal oxides (HNb3O8, HTiNbO5, HLaNb2O7, H2Ti4O9 and H2Ti2.8Mn0.2O7) were investigated. TEAIP could be intercalated into the interlayer spaces of layered HNb3O8 as well as HTiNbO5, and as a result, two novel inorganic–organic hybrid nanocomposites, TEAIP-intercalated HNb3O8 and TEAIP-intercalated HTiNbO5, were obtained,respectively. Based on the compositions of the intercalated compounds quantitatively estimated from TG-DTA data, the chemical formulas of the TEAIP-intercalated HNb3O8 and TEAIP-intercalated HTiNbO5 were expressed as (TEAIP)0.17H0.83Nb3O8 and (TEAIP)0.14H0.86TiNbO5, respectively. Neither H2Ti4O9 nor H2Ti2.8Mn0.2O7 formed any intercalated phase through the exchange reaction between the layered protonated metal oxides and TEAIP; HLaNb2O7 could only accommodate a very limited amount of the guest molecules, giving rise to a TEAIP-partially intercalated layered product. The different intercalation behavior of TEAIP in the layered metal oxides was ascribed to the difference of these protonated metal oxides in acidity and the difference of the layered hosts in charge density. The competitively intercalation behavior between TEAIP and n-decylamine in the interlayer space of HNb3O8 as well as HTiNbO5 was also investigated. Both TEAIP and n-decylamine could be simultaneously intercalated into HNb3O8, leading to two different guest-intercalated phases, although n-decylamine-intercalated phase was thermally unstable compared with the TEAIP-intercalated phase. In the case of HTiNbO5, only n-decylamine-intercalated phase was formed. The different basicity and steric hindrance of the two kinds of guest molecules and different acidity of the two layered hosts were mainly responsible for the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo, X.J., Hou, W.H., Yan, Q.J., Chen, Y.: Pillared layered transition metal oxides. Chin. Sci. Bull. 48, 101–110 (2003)

    Article  CAS  Google Scholar 

  2. Bruzaud, S., Levesque, G.: Polysiloxane-g-TiNbO5 nanocomposites: synthesis via in situ intercalative polymerization and preliminary characterization. Chem. Mater. 14, 2421–2426 (2002)

    Article  CAS  Google Scholar 

  3. Tong, Z., Shichi, T., Oshika, K., Takagi, K.: A nanostructured hybrid material synthesized by the intercalation of porphyrin into layered titanoniobate. Chem. Lett. 9, 876–877 (2002)

    Article  Google Scholar 

  4. Tsunoda, Y., Sugimoto, W., Sugahara, Y.: Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from Aurivillius phase Bi2SrTa2O9. Chem. Mater. 15, 632–635 (2003)

    Article  CAS  Google Scholar 

  5. Izawa, H., Kikkawa, S., Koizumi, M.: Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron 2, 741–744 (1983)

    Article  CAS  Google Scholar 

  6. Kaito, R., Miyamoto, N., Kuroda, K., Ogawa, M.: Intercalation of cationic phthalocyanines into layered titanates and control of the microstructures. J. Mater. Chem. 12, 3463–3468 (2002)

    Article  CAS  Google Scholar 

  7. Guo, X.J., Hou, W.H., Ding, W.P., Fan, Y.N., Yan, Q.J., Chen, Y.: Synthesis of a novel super-microporous layered material and its catalytic application in the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Microporous Mesoporous Mater. 80, 269–274 (2005)

    Article  CAS  Google Scholar 

  8. Guo, X.J., Hou, W.H., Chen, J., Xu, A.R.: Intercalation behavior of long-chain n-alkylamine and chiral Ti[(OC2H4)3N][OCH(CH3)2] in layered V2O5. Acta Chim. Sin. 64, 1770–1774 (2006)

    CAS  Google Scholar 

  9. Nakato, T., Iwata, Y., Kuroda, K., Kato, C.: Preparation of an intercalation compound of layered titanic acid H2Ti4O9 with methylene blue. J. Incl. Phenom. Macrocycl. Chem. 13, 249–256 (1992)

    Article  CAS  Google Scholar 

  10. Li, D., Yang, J., Zhang, L., Wang, X., Lu, L., Yang, X.: Synthesis and intercalation properties of nanoscale layered tetratitanate. J. Mater. Chem. 12, 1796–1799 (2002)

    Article  CAS  Google Scholar 

  11. Yan, Q.J., Hou, W.H., Chen, Y.S.: Preparation of porous chromia-pillared titanoniobate. J. Chem. Soc., Chem. Commun. 1865–1866 (1995)

  12. Liu, Z.H., Yang, X., Makita, Y., Ooi, K.: Synthesis of a new layered manganese oxide nanocomposite through a delamination/reassembling process. Chem. Lett. 7, 680–681 (2002)

    Article  Google Scholar 

  13. Ban, T., Kondoh, S., Ohya, Y., Takahashi, Y.: Degradation reaction of monoethanolamine using TS-1 zeolite as a photocatalyst. Phys. Chem. Chem. Phys. 1, 5745–5752 (1999)

    Article  CAS  Google Scholar 

  14. Motokucho, S., Takeuchi, D., Sanda, F., Endo, T.: Synthesis of cyclic trithiocarbonates from cyclic ethers and carbon disulfide catalyzed by titanium complex. Tetrahedron 57, 7149–7152 (2001)

    Article  CAS  Google Scholar 

  15. Nugent, W.A., Harlow, R.L.: Early transition metal alkoxide complexes bearing homochiral trialkanolamine ligands. J. Am. Chem. Soc. 116, 6142–6148 (1994)

    Article  CAS  Google Scholar 

  16. Furia, F.D., Licini, G., Modena, G., Motterle, R.: Enantioselective titanium-catalyzed sulfides oxidation: novel ligands provide significantly improved catalyst life. J. Org. Chem. 61, 5175–5177 (1996)

    Article  Google Scholar 

  17. Bonchio, M., Licini, G., Modena, G., Moro, S., Bortolini, O., Traldi, P., Nugent, W.A.: Use of electrospray ionization mass spectrometry to characterize chiral reactive intermediates in a titanium alkoxide mediated sulfoxidation reaction. J. Chem. Soc. Chem. Commun. 869–870 (1997)

  18. Guo, X.J., Hou, W.H., Ding, W.P., Fan, Y.N., Yan, Q.J., Chen, Y.: Synthesis of novel inorganic-organic hybrid nanocomposites: intercalation behaviour of titanium(IV) (triethanolaminato)-isopropoxide in a series of layered protonic metal oxides. Inorg. Chem. Commun. 7, 946–948 (2004)

    Article  CAS  Google Scholar 

  19. Nedjar, R., Borel, M.M., Raveau, B.: H3ONb3O8 and HNb3O8: new protonic oxides with a layer structure involving ion exchange properties. Mater. Res. Bull. 20, 1291–1296 (1985)

    Article  CAS  Google Scholar 

  20. Kikkawa, S., Koizumi, M.: Organic intercalation on layered compound KTiNbO5. Mater. Res. Bull. 15, 533–539 (1980)

    Article  CAS  Google Scholar 

  21. Hou, W.H., Yan, Q.J., Peng, B.C., Fu, X.C.: Synthesis and characterization of alumina-pillared layered tetratitanates with different interlayer spacines. J. Mater. Chem. 5, 109–114 (1995)

    Article  CAS  Google Scholar 

  22. Machida, M., Ma, X.W., Taniguchi, H., Yabunaka, J., Kijima, T.: Pillaring and photocatalytic property of partially substituted layered titanates: Na2Ti3−x M x O7 and K2Ti4−x M x O9 (M = Mn, Fe, Co, Ni, Cu). J. Mol. Catal. A 155, 131–142 (2000)

    Article  CAS  Google Scholar 

  23. Yang, C.C., Lee, Y.J.: Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solid Films 517, 4735–4740 (2009)

    Article  CAS  Google Scholar 

  24. Whinmire, K.H., Hutchison, J.C., Gardberg, A., Edwards, C.: Triethanolamine complexes of copper. Inorg. Chim. Acta 294, 153–162 (1999)

    Article  Google Scholar 

  25. Gasperin, P.M.: Structure du trinioate (V) de potassium KNb3O8 un niobate lamellaire. Acta Crystallogr. B 38, 2024–2026 (1982)

    Article  Google Scholar 

  26. Lambert, J.F., Deng, Z.Q., D’Espinose, J.B., Fripitat, J.J.: The intercalation process of n-alkyl amines or ammoniums within the structure of KTiNbO5. J. Colloid Interface Sci. 132, 337–351 (1989)

    Article  CAS  Google Scholar 

  27. Wang, D., Wu, G.: Study of X-ray photoelectron spectroscopy (XPS) on the structure of titatrane compounds. Chin. Sci. Bull. 29, 481–484 (1984)

    CAS  Google Scholar 

  28. Tagusagawa, C., Takagaki, A., Hayashi, S., Domen, K.: Characterization of HNbWO(6) and HTaWO(6) metal oxide nanosheet aggregates as solid acid catalysts. J. Phys. Chem. C 113, 7831–7837 (2009)

    Article  CAS  Google Scholar 

  29. Li, X., Kikugawa, N., Ye, J.: A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation. Chem. Eur. J. 15, 3538–3545 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank National Nature Science Foundation of China (Grant No. 20773065), 973 Project of China (Grant No. 2003CB615804) and Natural Science Foundation of Education Department of Henan Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ji Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, XJ., Hou, WH., Fan, YN. et al. Intercalation behaviors of chiral titanium(IV) (triethanolaminato)-isopropoxide (Ti(C2H4O)3N(OCH(CH3)2) in protonated lamellar metal oxides and characterization of the intercalated resultants. J Incl Phenom Macrocycl Chem 73, 211–218 (2012). https://doi.org/10.1007/s10847-011-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0044-1

Keywords

Navigation