Skip to main content
Log in

Activation of H2O2 by methyltrioxorhenium(VII) inside β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The effect of β-cyclodextrin on the catalytic stability and reactivity of methylrhenium trioxide (MTO), CH3ReO3, which has been used for activation of hydrogen peroxide toward oxidation and epoxidation reactions, was studied using UV–Vis spectrophotometery. The stability and reactivity of the new catalytic system (MTO/β-CD) to activate H2O2 toward oxidation of indigo blue dye were investigated in basic media. Furthermore, effects of inclusion stoichiometry, temperature and concentrations of hydrogen peroxide on the stability and reactivity of the MTO/β-CD system were investigated. The formation of the inclusion complex between MTO and β-CD was confirmed experimentally using the changes in the UV–Vis absorption spectra. The results of this study demonstrate that the complexation process was better guaranteed when the amount of β-CD is higher than that of MTO, using a 1:2 molar ratio of MTO:β-CD enhances both the activity and stability of the catalyst. The results showed that the stability of the catalytic system was enhanced in presence of β-CD with maintaining good reactivity of the MTO even in the presence of high concentration of NaOH. The changes of thermodynamic activation parameters (ΔH and ΔS) for the oxidation reaction of indigo with H2O2 catalyzed by MTO/β-CD system were determined on the basis of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 5
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laszlo, P., Levart, M., Bouhlel, E., Montaufier, M., Singh, G.P., Oyama, S.T., Hightower, J.W. (eds.): Catalytic Selective Oxidation, Chapter 4. American Chemical Society, Washington, DC (1993)

    Google Scholar 

  2. Al-Ajlouni, A.M., Espenson, J.H.: Kinetics and mechanism of the epoxidation of alkyl-substituted alkenes by hydrogen peorxide, catalyzed by methylrhenium trioxid. J. Org. Chem. 61, 3969–3976 (1996)

    Article  CAS  Google Scholar 

  3. Herrmann, W.A.: Olefins from Aldehydes in Applied Homogeneous Catalysis with Organometallic Compounds, 2nd edn, vol. 3, pp. 1078–1086. Wiley VCH, Weinheim, Germany (2002)

  4. Crestini, C., Caponi, M.C., Argyropoulos, D.S., Saladino, R.: Immoblized methyltrioxorhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorg. Med. Chem. 14, 5292–5302 (2006)

    Article  CAS  Google Scholar 

  5. Saladino, R., Neri, V., Pelliccia, A.R., Mincione, E.: Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems. Tetrahedron 59, 7403–7408 (2003)

    Article  CAS  Google Scholar 

  6. Zhu, Z., Espenson, J.H.: Oxidation of alkynes by hydrogen peroxide catalyzed by methylrhenium trioxide. J. Org. Chem. 60, 7728–7732 (1995)

    Article  CAS  Google Scholar 

  7. Adam, W., Herrmann, W.A., Saha-Moller, C.R., Shimizu, M.: Oxidation of methoxybenzenes to p-benzoquinones catalyzed by methyltrioxorhenium(VII). J. Mol. Catal. A Chem. 97, 15–20 (1995)

    Article  CAS  Google Scholar 

  8. Bernini, R., Mincione, E., Cortese, M., Aliotta, G., Saladino, R.: A new and efficient Baeyer-Villiger rearrangement of flavanone derivatives by the methyltrioxorhenium/H2O2 catalytic system. Tetrahedron Lett. 42, 5401–5404 (2001)

    Article  CAS  Google Scholar 

  9. Schuchardt, U., Mandelli, D., Shul’pin, G.B.: Methyltrioxorhenium catalyzed oxidation of saturated and aromatic hydrocarbons by H2O2 in air. Tetrahedron Lett. 37, 6487–6490 (1996)

    Article  CAS  Google Scholar 

  10. Adam, W., Herrmann, W.A., Lin, J., Saha-Moller, C.R.: Catalytic oxidation of phenols to p-quinones with the hydrogen peroxide and methyltrioxorhenium(VII) system. J. Org. Chem. 59, 8281–8283 (1994)

    Article  CAS  Google Scholar 

  11. Soldaini, G., Cardona, F., Goti, A.: Methyltrioxorhenium catalyzed domino epoxidation-nucleophilic ring opening of glycals. Tetrahedron Lett. 44, 5589–5592 (2003)

    Article  CAS  Google Scholar 

  12. Ballistreri, F., Chillemi, R., Sciuto, S., Tomaselli, G.A., Toscano, R.M.: Regio and stereoselective oxidations of unsaturated steroidal compounds with H2O2 mediated by CH3ReO3. Steroids 71, 565–577 (2006)

    Article  CAS  Google Scholar 

  13. Zhang, Z., Wang, J.: Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron 64, 6577–6605 (2008)

    Article  CAS  Google Scholar 

  14. Gonzales, J.M., Distasio Jr, R., Periana, R.A., Goddard III, W.A., Oxgaard, J.: Methylrhenium trioxide revisited: mechanisms for nonredox oxygen insertion in an M-CH3 bond. J. Am. Chem. Soc. 129, 15794–15804 (2007)

    Article  CAS  Google Scholar 

  15. Herrmann, W.A., Fischer, R.W., Marz, D.W.: Methyltrioxorhenium as catalyst for olefin oxidation. Angew. Chem. Int. Ed. Engl. 30, 1638–1641 (1991)

    Article  Google Scholar 

  16. Petrovski, Z., Braga, S.S., Santos, A.M., Rodrigues, S.S., Goncalves, I.S., Pillinger, M., Kuhn, F.E., Romao, C.C.: Synthesis and characterization of the inclusion compound of a ferrocenyldiimine dioxomolybdenum complex with heptakis-2,3,6-tri-O-methyl-β-cyclodextrin. Inorg. Chim. Acta 358, 981–988 (2005)

    Article  CAS  Google Scholar 

  17. Braga, S.S., Gago, S., Seixas, J.D., Valente, A.A., Pillinger, M., Santos, T.M., Goncalves, I.S., Romao, C.C.: β-Cyclodextrin and permethylated β-cyclodextrin inclusion compounds of a cylopentadienyl molybdenum tricarbonyl complex and their use as cyclooctene epoxidation catalyst precursors. Inorg. Chim. Acta 359, 4757–4764 (2006)

    Article  CAS  Google Scholar 

  18. Caron, L., Bricout, H., Tilloy, S., Ponchel, A., Landy, D., Fourmentin, S., Monflier, E.: Molecular recognition between a water-soluble organometallic complex and a β-cyclodextrin: first example of second-sphere coordination adducts possessing a catalytic activity. Adv. Synth. Catal. 346, 1449–1456 (2004)

    Article  CAS  Google Scholar 

  19. Fenyvesi, E., Szente, L., Russel, N.R., McNamara, M.: In: Szejtli, J., Osa, T. (eds.) Comprehensive Supramolecular Chemistry, vol. 3, p. 305. Pergamon Press, Oxford, UK (1996)

  20. Soldaini, G., Cardona, F., Goti, A.: Catalytic oxidation of imines based on methyltrioxorhenium/urea hyrogen peroxide: a mild and easy chemo- and regioselective entry to nitrones. Org. Lett. 9, 473–476 (2007)

    Article  CAS  Google Scholar 

  21. Yin, G., Busch, D.H.: Mechanistic details of facilitate applications of an exceptional catalyst, methyltrioxorhenium: encouraging results from oxygen-18 isotopic probes. Catal. Lett. 130, 52–55 (2009)

    Article  CAS  Google Scholar 

  22. Abu-Omar, M.M., Hansen, P.J., Espenson, J.H.: Deactivation of methylrhenium trioxide-peroxide catalysts by diverse and competing pathways. J. Am. Chem. Soc. 118, 4966–4974 (1996)

    Article  CAS  Google Scholar 

  23. Matusi, Y., Sunouchi, A., Yamamato, T.: Inhibitory effect of cyclodextrins on the discoloration reaction of an anthocyanide, pelargonidin chloride in acidic media. J. Incl. Phenom. Mol. Recognit. Chem. 32, 57–67 (1998)

    Article  Google Scholar 

  24. Hapiot, F., Tilloy, S., Monflier, E.: Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev. 106, 767–781 (2006)

    Article  CAS  Google Scholar 

  25. Harada, A.: Preparation, properties and stereochemical aspects of inclusion compounds of organometallic complexes with cyclodextrins. In: Zanello, P. (ed.) Chain, Clusters, Inclusion Compounds, Paramagnetic Labels and Organic Rings; Stereochemisty of Organometallic and Inorganic Compounds, vol. 5, pp. 411–455. Elsevier, Amsterdam (1994)

    Google Scholar 

  26. Ramusino, M.C., Bartolomei, M., Rufini, L.: H-NMR and UV-spectroscopic study of the inclusion complex formation between pyridoxine and β- and γ-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 25, 113–116 (1996)

    Article  CAS  Google Scholar 

  27. Kanagaraj, K., Pitchumani, K.: Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett. 51, 3312–3316 (2010)

    Article  CAS  Google Scholar 

  28. Narayana Murthy, S., Madhav, B., Prakash Reddy, V., Nageswar, Y.V.D.: One-pot synthesis of 2-amino-4H-chromen-4-yl phosphonate derivatives using β-cyclodextrin as reusable catalyst in water. Tetrahedron Lett. 51, 3649–3653 (2010)

    Article  Google Scholar 

  29. Cassez, A., Ponchel, A., Bricout, H., Fourmentin, S., Landy, D., Monflier, E.: Eco-efficient catalytic hydrodechlorination of carbon tetrachloride in aqueous cyclodextrin solutions. Catal. Lett. 108, 209–214 (2006)

    Article  CAS  Google Scholar 

  30. Szejtli, J.: Introuction and general over view of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  31. Al-Ajlouni, A.M., Espenson, J.H.: Epoxidation of styrenes by hydrogen peroxide as catalyzed by methylrhenium trioxide. J. Am. Chem. Soc. 117, 9243–9250 (1995)

    Article  CAS  Google Scholar 

  32. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  CAS  Google Scholar 

  33. Al-Ajlouni, A.M., Espenson, J.H., Bakac, A.: Reaction of hydrogen peroxide with the oxochromium(IV) ion by hydride transfer. Inorg. Chem. 32, 3162–3165 (1993)

    Article  CAS  Google Scholar 

  34. Gemeay, A.H., Mansour, I.A., El-Sharkawy, R.G., Zaki, A.B.: Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. J. Mol. Catal. A Chem. 193, 109–120 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Deanship of Research at Jordan University of Science and Technology (grant number 126/2001) is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. F. Al-Rawashdeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Rawashdeh, N.A.F., Al-Ajlouni, A.M., Bukallah, S.B. et al. Activation of H2O2 by methyltrioxorhenium(VII) inside β-cyclodextrin. J Incl Phenom Macrocycl Chem 70, 471–480 (2011). https://doi.org/10.1007/s10847-010-9876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9876-3

Keywords

Navigation