Skip to main content
Log in

HPLC study of the host–guest complexation between fluorescent glutathione derivatives and β-cyclodextrin

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

RP-HPLC and the van’t Hoff law were used to study the association in which β-cyclodextrin forms inclusion complexes with aminothiol–phthaldialdehyde derivatives prepared from either glutathione (GSH) or γ-glutamylcysteine (γ-glucys) and either naphthalene-2,3-dicarboxaldehyde (NDA) or o-phthaldialdehyde (OPA). Elution was carried out at pH 8.5, the derivatization pH which gave the highest fluorescence signal during batch experiments. The variation of the retention factor (k) was monitored as a function of column temperature (10–35 °C) and β-cyclodextrin concentration (0–5 mM) in the mobile phase. Apparent binding constants, enthalpy and entropy were calculated from van’t Hoff plots for the complexation reaction. These data lay the groundwork for the improvement of high throughput GSH quantification methods using fluorimetry in biological and vegetal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

K f :

Apparent association constant

CD:

Cyclodextrin

γ-glucys:

γ-Glutamyl-l-cysteine

GSH:

Glutathione

NDA:

Naphthalene-2,3-dicarboxaldehyde

OPA:

o-Phthaldialdehyde

k :

Retention factor

References

  1. Pastore, A., Federici, G., Bertini, E., Piemonte, F.: Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333, 19–39 (2003)

    Article  CAS  Google Scholar 

  2. Cereser, C., Guichard, J., Drai, J., Bannier, E., Garcia, I., Boget, S., Pavaz, P., Revol, A.: Quantitation of reduced and total glutathione at the femtomole level by high performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J. Chromatogr. B 752, 123–132 (2001)

    Article  CAS  Google Scholar 

  3. Dziurla, M.A., Leroy, P., Strunkmann, G.W., Salhi, M., Lee, D.U., Camacho, P., Heinz, V., Muller, J.A., Paul, E., Ginestet, P., Audic, J.M., Block, J.C.: Measurement of glutathione in activated sludges. Water Res. 38, 236–244 (2004)

    Article  CAS  Google Scholar 

  4. Parmentier, C., Wellman, M., Nicolas, A., Siest, G., Leroy, P.: Simultaneous measurement of reactive oxygen species and reduced glutathione using capillary electrophoresis and laser-induced fluorescence detection in cultured cell lines. Electrophoresis 20, 2938–2944 (1999)

    Article  CAS  Google Scholar 

  5. Lewicki, K., Marchand, S., Matoub, L., Lulek, J., Coulon, J., Leroy, P.: Development of a fluorescence-based microtiter plate method for the measurement of glutathione in yeast. Talanta 70, 876–882 (2006)

    Article  CAS  Google Scholar 

  6. Glowka, E., Lamprecht, A., Ubrich, N., Maincent, P., Lulek, J., Leroy, P.: Enhanced cellular uptake of a glutathione selective fluorogenic probe encapsulated in nanoparticles. Nanotechnology 17, 2546–2552 (2006)

    Article  CAS  Google Scholar 

  7. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  8. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  9. Kahle, C., Holzgrabe, U.: Determination of binding constants of cyclodextrin inclusion complexes with amino acids and dipeptides by potentiometric titration. Chirality 16, 509–515 (2004)

    Article  CAS  Google Scholar 

  10. Morin, N., Guillaume, Y.C., Perrin, E., Rouland, J.-C.: Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations. J. Chromatogr. A 808, 51–60 (1998)

    Article  CAS  Google Scholar 

  11. Flood, K.G., Reynolds, E.R., Snow, N.H.: J. Chromatogr. A 903, 49 (2000)

    Article  CAS  Google Scholar 

  12. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  13. Dong, Z.-E., Huang, X., Mao, S.-Z., Liang, K., Liu, J.-Q., Luo, G.-M., Shen, J.C.: Cyclodextrin-derived mimic of glutathione peroxidase exhibiting enzymatic specificity and high catalytic efficiency. Chem. Eur. J. 12, 3575 (2006)

    Article  CAS  Google Scholar 

  14. Kataky, R., Morgan, E.: Potential of enzyme mimics in biomimetic sensors: A modified cyclodextrin as a dehydrogenase enzyme mimic. Biosens. Bioelectron. 18, 1407–1417 (2003)

    Article  CAS  Google Scholar 

  15. Ali, I., Kumerer, K., Aboul-Enein, H.Y.: Mechanistic principles in chiral separations using liquid chromatography and capillary electrophoresis. Chromatographia 63, 295–307 (2006)

    Article  CAS  Google Scholar 

  16. Mrozek, J., Banecki, B., Karolczak, J., Wiczk, W.: Influence of the separation of the charged groups and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with beta-cyclodextrin. Biophys. Chem. 116, 237–250 (2005)

    Article  CAS  Google Scholar 

  17. Nakamura, H., Tamura, Z.: Fluorometric determination of thiols by liquid chromatography with postcolumn derivatization. Anal. Chem. 53, 2190 (1981)

    Article  CAS  Google Scholar 

  18. Bantan-Polak, T., Kassai, M., Grant, K.B.: A comparison of fluorescamine and naphthalene-2,3-dicarboxaldehyde fluorogenic reagents for microplate-based detection of amino acids. Anal. Biochem. 297, 128–136 (2001)

    Article  CAS  Google Scholar 

  19. Wagner, B.D., McManus, G.J.: Enhancement of the fluorescence and stability of o-phthalaldehyde-derived isoindoles of amino acids using hydroxypropyl-beta-cyclodextrin. Anal. Biochem. 317, 233–239 (2003)

    Article  CAS  Google Scholar 

  20. Hummel, J.P., Dreyer, W.J.: Measurement of protein-binding phenomena by gel filtration. Biochim. Biophys. Acta 63, 530–532 (1962)

    Article  CAS  Google Scholar 

  21. Fujimura, K., Ueda, T., Kitagawa, M., Takayanagi, H., Ando, T.: Reversed-phase behavior of aromatic compounds involving β-cyclodextrin inclusion complex formation in the mobile phase. Anal. Chem. 58, 2668–2674 (1986)

    Article  CAS  Google Scholar 

  22. Kazakevich, Y.V., McNair, H.M.: Low-energy interactions in high-performance liquid chromatography. J. Chromatogr. A 872, 49–59 (1995)

    Article  Google Scholar 

  23. Benesi, H.A., Hildebrand, J.H.: Ultraviolet absorption bands of iodine in aromatic hydrocarbons. J. Am. Chem. Soc. 70, 2832–2833 (1948)

    Article  CAS  Google Scholar 

  24. Ventura, C.A., Giannone, I., Paolino, D., Pistara, V., Corsaro, A., Puglisi, G.: Preparation of celecoxib-dimethy-β-cyclodextrin inclusion complex: characterization and in vitro permeation study. Eur. J. Med. Chem. 40, 624–631 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Christian Ruby and Dr. Khalil Hanna (LCPME, Nancy, France) for helpful discussions during the preparation of this manuscript, and to Pr. John Almy for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Marchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, S., Guzek, A. & Leroy, P. HPLC study of the host–guest complexation between fluorescent glutathione derivatives and β-cyclodextrin. J Incl Phenom Macrocycl Chem 66, 409–416 (2010). https://doi.org/10.1007/s10847-009-9619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9619-5

Keywords

Navigation