Skip to main content
Log in

Heteromolecular grids of free-base and zinc-tetra(4-pyridyl)porphyrins with benzenetetracarboxylic acid

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study describes the formation of hetero-molecular networks involving the 1,2,4,5-benzenetetracarboxylic acid (BTCA) and either the free-base or zinc-metallated tetra(4-pyridyl)porphyrin (TPyP or Zn–TPyP, respectively), taking advantage of the complementary tetradentate H-atom donor and H-atom acceptor capacity of the component species. The reaction of BTCA with TPyP yields flat square-grid-type hydrogen bonded arrays, wherein every BTCA moiety interacts with four different porphyrin units and each one of the latter links laterally to four different tetraacid molecules. Replacement of TPyP by Zn–TPyP adds axial coordination capacity to the porphyrin unit and changes the intermolecular interaction pattern. In this case, the supramolecular self-assembly involves trans-axial coordination of BTCA to Zn–TPyP, into a 2:1 complex of the two species, as well as extended hydrogen bonding in four lateral directions between the (BTCA)2(Zn–TPyP) units thus formed. The hydrogen-bond networking takes place between the four N(pyridyl)-sites of the porphyrin scaffold and the axial tetracid ligands of four neighboring complexes. In the two crystals, the open hydrogen bonded molecular networks stack in an offset manner, incorporating molecules of the 1,1,2,2-tetrachloroethane solvent within channel zones that penetrate through the layered structure. Application of the TPyP scaffold in the formation of hydrogen-bonded (rather than coordination-driven) assemblies has not been explored prior to our work on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Fleischer, E.B.: α, β, γ, δ-Tetra-(4-pyridyl)-porphine and some of its metal complexes. Inorg. Chem. 1, 493–495 (1962)

    Article  CAS  Google Scholar 

  2. Collins, D.M., Hoard, J.L.: The crystal structure and molecular stereochemistry of α, β, γ, δ-tetra(4-pyridyl)-porphinatomonopyridinezinc(II). Appraisal of bond strain in the porphine skeleton. J. Am. Chem. Soc. 92, 3761–3771 (1970)

    Article  CAS  Google Scholar 

  3. Fleischer, E.B., Shachter, A.M.: Coordination oligomers and a coordination polymer of zinc tetraarylporphyrins. Inorg. Chem. 30, 3763–3769 (1991)

    Article  CAS  Google Scholar 

  4. Krupitsky, H., Stein, Z., Goldberg, I., Strouse, C.E.: Crystalline complexes, coordination polymers and aggregation modes of tetra(4-pyridyl)porphyrin. J. Incl. Phenom. Mol. Recognit. Chem. 18, 177–192 (1994)

    Article  CAS  Google Scholar 

  5. Lin, K.-J.: SMTP-1: the first functionalized metalloporphyrin molecular sieves with large channels. Angew. Chem. Int. Ed. Engl. 38, 2730–2732 (1999)

    Article  CAS  Google Scholar 

  6. Dieters, E., Bulach, V., Hossein, M.W.: Reversible single-crystal-to-single-crystal guest exchange in a 3-D coordination network based on a zinc porphyrin. Chem. Commun. 3906–3908 (2005)

  7. Lipstman, S., Muniappan, S., Goldberg, I.: Supramolecular reactivity of porphyrins with mixed iodophenyl and pyridyl meso-substituents. Cryst. Growth Des. 8, 1682–1688 (2008)

    Article  CAS  Google Scholar 

  8. Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R.: Assembly of porphyrin building-blocks into network structures with large channels. Nature 369, 727–729 (1994)

    Article  CAS  Google Scholar 

  9. Hagrman, D., Hagrman, P.J., Jubieta, J.: Solid-state coordination chemistry: the self-assembly of microporous organic-inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters. Angew. Chem. Int. Ed. Engl. 38, 3165–3168 (1999)

    Article  CAS  Google Scholar 

  10. Sharma, C.V.K., Broker, G.A., Huddleston, J.G., Baldwin, J.W., Metzger, R.M., Rogers, R.D.: Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphyrins. J. Am. Chem. Soc. 121, 1137–1144 (1999)

    Article  CAS  Google Scholar 

  11. Pan, L., Kelly, S., Huang, X., Li, J.: Unique 2D metalloporphyrin networks constructed from iron(II) and meso-tetra(4-pyridyl)porphyrin. Chem. Commun. 2334–2335 (2002)

  12. Carlucci, L., Ciani, G., Proserpio, D.M., Porta, F.: Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4-pyridyl)porphyrin building blocks: the exceptional self-penetrating topology of the 3D network of [Ag8(ZnIITPyP)7-(H2O)2](NO3)8. Angew. Chem. Int. Ed. Engl. 42, 317–322 (2003)

    Article  CAS  Google Scholar 

  13. Ohmura, T., Usuki, A., Fukumori, K., Ohta, T., Tatsumi, K.: New porphyrin-based metal–organic framework with high porosity: 2-D infinite 22.2-Å square-grid coordination network. Inorg. Chem. 45, 7988–7990 (2006)

    Article  CAS  Google Scholar 

  14. Diskin-Posner, Y., Patra, G.K., Goldberg, I.: Supramolecular assembly of metalloporphyrins in crystals by axial coordination through amine ligands. Dalton Trans. 2775–2782 (2001)

  15. Ring, D.J., Aragoni, M.C., Champness, N.R., Wilson, C.: A coordination polymer supramolecular isomer formed from a single building block: an unexpected porphyrin ribbon constructed from zinc(tetra(4-pyridyl)porphyrin). CrystEngComm 7, 621–623 (2005)

    Article  CAS  Google Scholar 

  16. Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Ruiz-Pérez, C., Julve, M.: Influence of the presence of divalent first-row transition metal ions on the structure of sodium(I) salts of 1,2,3,4-benzenetetracarboxylic acid (H4BTA). CrystEngComm 8, 338–345 (2006)

    Article  CAS  Google Scholar 

  17. Ghosh, S.K., Bharadwaj, P.K.: Puckered-boat conformation hexameric water clusters stabilized in a 2D metal–organic framework structure built from Cu(II) and 1,2,4,5-benzenetetracarboxylic acid. Inorg. Chem. 43, 5180–5182 (2004)

    Article  CAS  Google Scholar 

  18. Shi, N., Yin, G., Han, M., Jiang, L., Xu, Z.: Self-assembly of two different hierarchical nanostructures on either side of an organic supramolecular film in one step. Chemistry 14, 6255–6259 (2008)

    Article  CAS  Google Scholar 

  19. Blunt, M., Lin, X., Gimenez-Lopez, M.C., Schröder, M., Champness, N.R., Beton, P.H.: Directing two-dimensional molecular crystallization using guest templates. Chem. Commun. 2304–2306 (2008)

  20. Zhou, H., Dang, H., Yi, J.-H., Nanci, A., Rocherfort, A., Wuest, J.D.: Frustrated 2D molecular crystallization. J. Am. Chem. Soc. 129, 13774–13775 (2000)

    Article  Google Scholar 

  21. Johnson, S.L., Rumon, K.A.: Infrared spectra of solid 1:1 pyridine-benzoic acid complexes; the nature of the hydrogen bond as a function of the acid-base levels in the complex. J. Phys. Chem. 69, 74–86 (1965)

    Article  CAS  Google Scholar 

  22. Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003)

    Article  CAS  Google Scholar 

  23. Gilli, P., Pretto, L., Bertolasi, V., Gilli, G.: Predicting hydrogen-bond strengths from acid–base molecular properties. The pK a slide rule: toward the solution of a long-lasting problem. Acc. Chem. Res. 42, 33–44 (2009)

    Article  CAS  Google Scholar 

  24. Goldberg, I.: Crystal engineering of porphyrin framework solids. Chem. Commun. 1243–1254 (2005)

  25. Allen, F.H.: The Cambridge crystallographic database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58, 380–388 (2002)

    Article  Google Scholar 

  26. Jeffrey, G.A.: An Introduction to Hydrogen Bonding. Oxford University Press, Oxford (1997)

    Google Scholar 

  27. Diskin-Posner, Y., Goldberg, I.: From porphyrin sponges to porphyrin sieves: a unique crystalline lattice of aquazinc tetra(4-carboxyphenyl)porphyrin with nanosized channels. Chem. Commun. 1961–1962 (1999)

  28. Vinodu, M., Goldberg, I.: Complexes of hexamethylenetetramine with zinc-tetraaryl-porphyrins, and their assembly modes in crystals as clathrates and hydrogen-bonding network polymers. New J. Chem. 28, 1250–1254 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by The Israel Science Foundation (grant No. 502/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koner, R., Goldberg, I. Heteromolecular grids of free-base and zinc-tetra(4-pyridyl)porphyrins with benzenetetracarboxylic acid. J Incl Phenom Macrocycl Chem 66, 403–408 (2010). https://doi.org/10.1007/s10847-009-9611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9611-0

Keywords

Navigation