Skip to main content
Log in

Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Geometries, formation and electronic properties of cucurbit[n]uril-oxaliplatin n = 5–8, host-guest complexes are investigated with DFT calculations. The formation of inclusion complexes of CB[n]-oxaliplatin are facile in CB[n] n = 6–8. In the complex, the cyclohexyl group is found to be deep inside the cavity, with the formation of a hydrogen bonding between the portal oxygen atoms and the amine nitrogen of the oxaliplatin guest. NBO analysis shows the transfer of charge from the metal center to the CB[7] unit and the existence of hydrogen bonding between the oxygen portal and amine nitrogen. The HOMO orbital is localized on the carboxylate group and the LUMO orbital are localized on the cucurbituril unit in CB[7]-oxaliplatin complex. The strength of the interaction determined here reflects the ability of CB[n] to act as a host for suitably oxaliplatin guests, even in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Sherman, S.E., Lippard, S.J.: Structural aspects of platinum anticancer drug interactions with DNA. Chem. Rev. 87, 1153–1181 (1987)

    Article  CAS  Google Scholar 

  2. Lippert, B. (ed.): Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. John Wiley and Sons Ltd, New York (1999)

    Google Scholar 

  3. Safra, T., Molho, R.B., Grisaru, D., Spigel, S., Geva, R., Matcejevsk, D., Inbar, M., Menzcer, J., Levy, T.: A phase-II study evaluating safety and efficacy with weekly paclitaxel and carboplatin as a primary treatment for patients with advanced epithelial ovarian cancer (EOC). J. Clin. Oncol. 24, 5077 (2006)

    Google Scholar 

  4. Chabner, B.A., Longo, D.L. (eds.): Cancer Chemotherapy and Biotherapy, Principles and Practice. Lippincott Williams and Wilkins (2006)

  5. Ozols, R.F.: Ovarian cancer: is dose intensity dead. J. Clin. Oncol. 25, 4157–4158 (2007)

    Article  CAS  Google Scholar 

  6. Li, X., Jasai, B.R. (eds.): Design of controlled release drug delivery systems. The Mc Graw-Hill companies (2006)

  7. Krause-Heuer, A.M., Grant, M.P., Orkey, N., Aldrich-Wright, J.R.: Drug delivery devices and targeting agents for platinum (II) anticancer complexes. Aust. J. Chem. 61, 675–681 (2008)

    Article  CAS  Google Scholar 

  8. Kemp, S., Wheate, N.J., Wang, S., Collins, J.G., Ralph, S.F., Day, A.I., Higgins, V.J., Aldrich-Wright, J.R.: Encapsulation of platinum(II)-based DNA intercalators within cucurbit[6, 7, 8]urils. J. Biol. Inorg. Chem. 12, 969–979 (2007)

    Article  CAS  Google Scholar 

  9. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  10. Tian, Z.C., Ni, X.L., Xiao, X., Wu, F., Zhang, Y.Q., Zhu, Q.J., Xue, S.F., Tao, Z.: Interaction models of three alkyl substituted cucurbit[6]uril with a hydrochloride salt of 4, 4′-dipyridyl guest. J. Mol. Struct. 888, 48–54 (2008)

    Article  CAS  Google Scholar 

  11. Wang, R., Yuan, L., Ihmels, H., Macartney, D.H.: Cucurbit[8]uril/cucurbit[7]uril controlled off/on fluorescence of the acridizinium and 9-aminoacridizinium cations in aqueous solution. Chem.—A Eur. J. 13, 6468–6473 (2007)

    Article  CAS  Google Scholar 

  12. Li, L.S., Ge, Y.H., Huang, Z.H., Li, Y.P.: Study on the molecular recognition of perhydroxycucurbit[6]uril with methyl orange by spectroscopic methods. Specrosc. Spectr. Anal. 27, 1393–1397 (2007)

    CAS  Google Scholar 

  13. Wyman, I.W., Macartney, D.H.: Cucurbit[7]uril host–guest complexes with small polar organic guests in aqueous solution. Org. Biomol. Chem. 6, 1796–1801 (2008)

    Article  CAS  Google Scholar 

  14. Wheate, N.J., Kumar, P.G.A., Torres, A.M., Aldrich-Wright, J.R., Price, W.S.: Examination of cucurbit[7]uril and its host–guest complexes by diffusion nuclear magnetic resonance. J. Phys. Chem. B. 112, 2311–2314 (2008)

    Article  CAS  Google Scholar 

  15. Liu, S.M., Shukla, A.D., Gadde, S., Wagner, B.D., Kaifer, A.E., Isaacs, L.: Ternary complexes comprising cucurbit[10]uril, porphyrins and guests. Angew. Chem. Int. Ed. 47, 2657–2660 (2008)

    Article  CAS  Google Scholar 

  16. Liu, J.X., Long, L.S., Huang, R.B., Zheng, L.S.: Interesting anion—inclusion behavior of cucurbit[5]uril and its lanthanide—capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007)

    Article  CAS  Google Scholar 

  17. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  18. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: synthesis, isolation, characterization, and X-ray crystal structure of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  19. Wheate, N.J.: Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. J. Inorg. Biochem. 102, 2060–2066 (2008)

    Article  CAS  Google Scholar 

  20. Jeon, Y.J., Kim, S.-Y., Ko, Y.H., Sakamoto, S., Yamaguchi, K., Kim, K.: Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem. 3, 2122–2125 (2005)

    Article  CAS  Google Scholar 

  21. Marquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004)

    Article  CAS  Google Scholar 

  22. Pichierri, F.: DFT study of cucurbit[n]uril, n = 5–10. J. Mol. Struct. (Theochem.) 765, 151–152 (2006)

    Article  CAS  Google Scholar 

  23. Buschmann, H.-J., Wego, A., Zielesny, A., Schollmeyer, E.: Structure, electronic properties and NMR-shielding of cucurbit[n]urils. J. Incl. Phenom. Macrocycl. Chem. 54, 85–88 (2006)

    Article  CAS  Google Scholar 

  24. Oh, K.S., Yoon, J., Kim, K.S.: Structural stabilities and self-assembly of cucurbit[n]uril (n = 4–7) and decamethylcucurbit[n]uril (n = 4–6): a theoretical study. J. Phys. Chem. B. 105, 9726–9731 (2001)

    Article  CAS  Google Scholar 

  25. Bakovets, V.V., Masliy, A.N., Kuznetsov, A.M.: Formation thermodynamics of cucurbit[6]uril macrocycle molecules: a theory study. J. Phys. Chem. B. 112, 12010–12013 (2008)

    Article  CAS  Google Scholar 

  26. Pinjari, R.V., Gejj, S.P.: Electronic, structure, molecular electrostatic potential and NMR chemical shifts in cucurbit[n]urils (n = 5–8), ferrocene and their complexes. J. Phys. Chem. A. 112, 12679–12686 (2008)

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, revision D.01. Gaussian, Inc., Wallingford, CT (2004)

  28. Reed, A.L., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor view point. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  29. Bushchmann, H.-J., Wego, A., Zielesny, A., Schollmeyer, E.: Structure, stability, electronic properties and NMR-shielding of the cucurbit[6]uril-spermine-complex. J. Incl. Phenom. Macrocycl. Chem. 54, 241–246 (2006)

    Article  Google Scholar 

  30. Tyagi, P., Gahlot, P., Kakkar, R.: Structural aspects of the anti-cancer drug oxaliplatin: a combined theoretical and experimental study. Polyhedron 27, 3567–3574 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants-in-aid for Research Project; Promotion of Advanced Medical Technology (H18-Nano-001); Ministry of Health, Labour and Welfare of Japan is gratefully acknowledged. The authors thank the crew of the Center for Computational Materials Science at Institute for Materials Research, Tohoku University, for their continuous support of the HITACHI SR11000 supercomputing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sathiyamoorthy Venkataramanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3994 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suvitha, A., Venkataramanan, N.S., Mizuseki, H. et al. Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8. J Incl Phenom Macrocycl Chem 66, 213–218 (2010). https://doi.org/10.1007/s10847-009-9601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9601-2

Keywords

Navigation