Skip to main content
Log in

Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and β-cyclodextrin: a computational study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, molecular dynamics (MD) simulations have been conducted to study the inclusion complexes between cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD) with N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation, and N-methyl-4-(p-methyl benzoyl)-pyridine in aqueous solutions to gain detailed information about the dynamics and mechanism of the inclusion complexes. The obtained MD trajectories were used to estimate the binding free energy of the studied complexes using the molecular mechanics/Poisson Bolzmann surface area (MM–PBSA) method. Results indicate preference of CB7 to bind to the cationic guest more than the neutral guest, whereas β-CD exhibits more or less the same affinity to complex with either species. Furthermore it was interesting to note that β-CD forms more stable complexes with both guests than CB7. Average structure of each complex and the distances between the center of masses of the guest and the host were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaac, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. Engl. 44, 4844–4870 (2005). doi:10.1002/anie.200460675

    Article  CAS  Google Scholar 

  2. Pichierri, F.: Density functional study of cucurbituril and its sulfur analogue. Chem. Phys. Lett. 390, 214–219 (2004). doi:10.1016/j.cplett.2004.04.006

    Article  CAS  Google Scholar 

  3. Rawashdeh, A.M., Thangavel, A., Sotiriou-Leventis, C., Leventis, N.: Control of the ketone to gem-diol equilibrium by host–guest interactions. Org. Lett. 10(6), 1131–1134 (2008). doi:10.1021/ol800021r

    Article  CAS  Google Scholar 

  4. Buschmann, H.J., Mutihacb, L., Mutihaca, R.C., Schollmeyer, E.: Complexation behavior of cucurbit[6]uril with short polypeptides. Thermochim. Acta. 430, 79–82 (2005). doi:10.1016/j.tca.2005.01.002

    Article  CAS  Google Scholar 

  5. Mock, W.L., Shih, N.Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986). doi:10.1021/jo00373a018

    Article  CAS  Google Scholar 

  6. Mock, W.L., Shih, N.Y.: Organic ligand–receptor interactions between cucurbituril and alkylammonium ions. J. Am. Chem. Soc. 110, 4706–4710 (1988). doi:10.1021/ja00222a031

    Article  CAS  Google Scholar 

  7. Mock, W.L., Shih, N.Y.: Dynamics of molecular recognition involving cucurbituril. J. Am. Chem. Soc. 111, 2697–2699 (1989). doi:10.1021/ja00189a053

    Article  CAS  Google Scholar 

  8. Marquez, C., Hudgins, R.H., Nau, W.M.: Mechanism of host–guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004). doi:10.1021/ja0319846

    Article  CAS  Google Scholar 

  9. Kim, H., Jeno, W., Ko, Y.K., Kim, K.: Inclusion of methylviologen in cucurbit[7]uril. Proc. Natl Acad. Sci. USA 99, 5007–5011 (2002). doi:10.1073/pnas.062656699

    Article  CAS  Google Scholar 

  10. Moon, K., Kaifer, A.E.: Modes of binding interaction between viologen guests and the cucurbit[7]uril host. Org. Lett. 6, 185–188 (2004). doi:10.1021/ol035967x

    Article  CAS  Google Scholar 

  11. Wei, F., Liu, S., Xu, L., Cheng, G., Wu, C., Feng, Y.: The formation of cucurbit[n]uril (n = 6, 7) complexes with amino compounds in aqueous formic acid studied by capillary electrophoresis. Electrophoresis 26, 2214–2224 (2005). doi:10.1002/elps.200410260

    Article  CAS  Google Scholar 

  12. Sindelar, V., Monn, K., Kaifer, A.E.: Binding selectivity of cucurbit[7]uril: bis(pyridinium)-1,4-ylylene versus 4,4′-bipyridinium guest sites. Org. Lett. 6, 2665–2668 (2004). doi:10.1021/ol049140u

    Article  CAS  Google Scholar 

  13. Jeon, Y., Kim, S., Ko, Y., Sakamoto, S., Yamaguchi, D., Kim, K.: Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem. 3, 2122–2125 (2005). doi:10.1039/b504487a

    Article  CAS  Google Scholar 

  14. Buschmann, H., Jansen, K., Schollmeyer, E.: The complex formation of α,ω-diols with cucurbituril and α-cyclodextrin the first step to the formation of rotaxanes and polyrotaxenes of the polyester type. Acta Chim. Slov. 46, 405–411 (1999)

    CAS  Google Scholar 

  15. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003). doi:10.1021/ar020254k

    Article  CAS  Google Scholar 

  16. Kim, J., Jung, I., Kim, S., Lee, E., Kang, J., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). doi:10.1021/ja993376p

    Article  CAS  Google Scholar 

  17. Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. methods. J. Comput. Chem. 21, 132–146 (2000). doi:10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    Article  CAS  Google Scholar 

  18. El-Barghouthi, M.I., Jaime, C., Al-Sakhen, N.A., Issa, A.A., Abdoh, A.A., Al-Omari, M.M., Badwan, A.A., Zughul, M.B.: Molecular dynamic simulations and MM–PBSA calculations of the cyclodextrin inclusion complexes with 1-alkanols para-substituted phenols and substituted imidazoles. J. Mol. Struct. THEOCHEM 853, 45–52 (2008)

    Article  CAS  Google Scholar 

  19. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R.L., Merz, K.M., Wang, B., Pearlman, D.A., Crowley, M., Brozell, S., Tsui, V., Gohlke, H., Mongan, J., Hornak, V., Cui, G., Beroza, P., Schafmerister, C., Caldwell, J.W., Ross, W.S., Kollman, P.A.: AMBER8. University of California, San Francisco (2004)

    Google Scholar 

  20. Wang, J., Cieplak, P., Kollman, P.A.: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074 (2000). doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

    Article  CAS  Google Scholar 

  21. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  22. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montagomery, J., Verven, J.R., Kudin, K., Burant, J., Iyenger, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., Nakatsuji, H., Hada, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Konx, J., Hratchian, H., Cross, J., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P., Moromuka, K., Voth, G., Salvador, P., Dannenberg, J., Zakrzewski, V., Dapprich, S., Daniels, A., Strain, M., Farkas, O., Malick, D., Rabuck, A., Raghavachari, K., Foresman, J., Ortiz, J., Cui, Q., Baboul, A., Clifford, S., Cioslwski, J., Setvanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Marton, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Gonzalez, C., Pople, J.: Gaussian 03 revision A.1. Gaussian, Inc., Pittsburgh (2003)

    Google Scholar 

  23. Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A.: A well behaved electrostatic potential based method using charge restraints for determining atom-centered charges. The RESP model. J. Phys. Chem. 97, 10269–10280 (1993). doi:10.1021/j100142a004

    Article  CAS  Google Scholar 

  24. Jorgensen, W., Chanrasekhar, J., Madura, J., Klein, M.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  25. Darden, T., York, D., Pederson, L.: Particle mesh Ewald-an Nlog(N) methods for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  26. Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  27. Feig, M., Karanicolas, J., Brooks, C.L.: MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graph. Model. 22, 377–395 (2004). doi:10.1016/j.jmgm.2003.12.005

    Article  CAS  Google Scholar 

  28. Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 68, 16–34 (2003). doi:10.1002/bip.10270

    Article  Google Scholar 

  29. Hou, T., Guo, S., Xu, X.: Predictions of binding of a diverse set of ligands to gelatinase-a by a combination of molecular dynamics and continuum solvent models. J. Phys. Chem. B 106, 5527–5535 (2002). doi:10.1021/jp015516z

    Article  CAS  Google Scholar 

  30. Weinzinger, P., Weiss-Greiler, P., Snor, W., Viernstein, H., Wolschann, P.: Molecular dynamics simulations and quantum chemical calculations on β-cyclodextrin–spironolactone complex. J. Incl. Phenom. Macrocycl. Chem. 57, 29–33 (2007). doi:10.1007/s10847-006-9165-3

    Article  CAS  Google Scholar 

  31. Mock, W.L., Pierpont, J.: A cucurbituril-based molecular switch. J. Chem. Soc. Chem. Commun. 1509–1511 (1990). doi:10.1039/c39900001509

  32. Sobransingh, D., Kaifer, A.E.: Electrochemically switchable CB7 based pseudorotaxanes. Org. Lett. 8, 3247–3250 (2006). doi:10.1021/ol061128+

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Hashemite University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa I. El-Barghouthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I. et al. Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and β-cyclodextrin: a computational study. J Incl Phenom Macrocycl Chem 64, 357–365 (2009). https://doi.org/10.1007/s10847-009-9574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9574-1

Keywords

Navigation