Skip to main content
Log in

NMR study of host–guest complexes of disulfonated derivatives of 9, 10-diphenylanthracene and corresponding endoperoxides with cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Disulfonated derivatives of 9,10-diphenyl anthracene (dsDPA) are known carriers of singlet oxygen. DsDPA and corresponding endoperoxides (dsDPAO2) form host–guest complexes with native cyclodextrins (i.e. β-CD and γ-CD). The modes of host–guest interaction were studied by 1H NMR and 2D-NMR (ROESY). Specific inclusions of phenyl groups of dsDPA/dsDPAO2 into the cyclodextrin cavities were found for both β-CD and γ-CD. The mode of interaction depends on the size of the CD cavity and the position of the sulfonate group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  3. Minns, J.W., Khan, A.: α-Cyclodextrin-I 3 host–guest complex in aqueous solution: theoretical and experimental studies. J. Phys. Chem. A 106, 6421–6425 (2002)

    Article  CAS  Google Scholar 

  4. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1198)

    Article  Google Scholar 

  5. Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20, 341–359 (2002)

    Article  CAS  Google Scholar 

  6. Partyka, M., Ha Au, B., Evans, C.H.: Cyclodextrins as phototoxicity inhibitors in drug formulations: studies on model systems involving naproxen and β-cyclodextrin. J. Photochem. Photobiol. A 140, 67–74 (2001)

    Article  CAS  Google Scholar 

  7. Schneider, H.J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrin and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  8. Djedaïne, F., Lin, S.Z., Perly, B., Wouessidjewe, D.: High-field nuclear-magnetic-resonance techniques for the investigation of a beta-cyclodextrin- indomethacin inclusion complex. J. Pharmacol. Sci.-US 79, 643–646 (1990)

    Article  Google Scholar 

  9. Fielding, L.: Determination of association constants (K-a) from solution NMR data. Tetrahedron 56, 6151–6170 (2000)

    Article  CAS  Google Scholar 

  10. Salvatierra, D., Jaime, C., Virgili, A., Sánchez-Ferrando, F.: Determination of the inclusion geometry for the β-cyclodextrin/benzoic acid complex by NMR and molecular modeling. J. Org. Chem. 61, 9578–9581 (1996)

    Article  CAS  Google Scholar 

  11. Fernandes, C.M., Carvalho, R.A., Pereira da Costa, S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18, 285–296 (2003)

    Article  CAS  Google Scholar 

  12. Sun, D.-Z., Li, L., Qiu, X.-M., Liu, F., Yi, B.-L.: Isothermal titration calorimetry and H-1 NMR studies on host–guest interaction of paeonol and two of its isomers with beta-cyclodextrin. Int. J. Pharm. 316, 7–13 (2006)

    Article  CAS  Google Scholar 

  13. Amato, M.E., Lipkowitz, K.B., Lombardo, G.M., Pappalardo, G.C.: High-field NMR spectroscopic techniques combined with molecular dynamics simulations for the study of the inclusion complexes of α- and β-cyclodextrins with the cognition activator 3-phenoxypyridine sulphate. Magn. Reson. Chem. 36, 693–705 (1998)

    Article  CAS  Google Scholar 

  14. Cameron, K.S., Fletcher, D., Fielding, L.: An NMR study of cyclodextrin complexes of the steroidal neuromuscular blocker drug Rocuronium Bromide. Magn. Reson. Chem. 40, 251 (2002)

    Article  CAS  Google Scholar 

  15. Schneider, H.J., Blatter, T., Simona, S.: NMR and fluorescence studies of cyclodextrin complexes with guest molecules containing both phenyl and naphthyl units. J. Am Chem. Soc. 113, 1996–2000 (1991)

    Article  CAS  Google Scholar 

  16. Simona, S., Schneider, H.J.: NMR analyses of cyclodextrin complexes with substituted benzoic acid and benzoate anions. J. Chem. Soc. Perkin Trans. 2, 1717–1722 (2000)

    Google Scholar 

  17. Bothner-By, A.A., Stephens, R.L., Ju-mee Lee.: Structure determination of a tetrasaccharide: Transient nuclear overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813 (1984)

    Article  CAS  Google Scholar 

  18. Slavětínská, L., Mosinger, J., Kubát, P.: Supramolecular carriers of singlet oxygen: photosensitized formation and thermal decomposition of endoperoxides in the presence of cyclodextrins. J. Photochem. Photobiol. A (in press), doi: 10.1016/j.jphotochem.2007.09.007

  19. Étienne, A., Lepeley, J.C., Heymés R.: Mémoires Présentés a la Société. Chimique 192, 835 (1949)

    Google Scholar 

  20. Aubry, J.M.: Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. J. Am. Chem. Soc. 107, 5844–5849 (1985)

    Article  CAS  Google Scholar 

  21. Aubry, J.M., Cazin, B.: Chemical sources of singlet oxygen. 2. Quantitative generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions. Inorg. Chem. 27, 2013–2014 (1988)

    Article  CAS  Google Scholar 

  22. Nardello, V., Bogaert, S., Alsters, P.L., Aubry, J.M.: Singlet oxygen generation from H2O2/MoO 2−4 : peroxidation of hydrophobic substrates in pure organic solvents. Tetrahedron Lett. 43, 8731–8734 (2002)

    Article  CAS  Google Scholar 

  23. Aubry, J.M., Cazin, B.: Chemical source of singlet oxygen. 3. Peroxidation of water-soluble singlet oxygen carriers with the hydrogen peroxide-molybdate systém. J. Org. Chem. 54, 726–728 (1989)

    Article  CAS  Google Scholar 

  24. Hanessian, S., Benalil, A., Viet, M.T.P.: The intramolecular inclusion of aromatic esters within β-cyclodextrin as a function of chain length – a detailed NMR study. Tetrahedron 51, 10131–10148 (1995)

    Article  CAS  Google Scholar 

  25. Forgo, P., D’Souza, V.T.: The application of slective ROE experiments to study solution structures of cyclomaltooligosacharide derivatives and complexes. Carbohydr. Res. 306, 473–478 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (Grants Nos. 203/08/0831, 203/07/1424 and 203/06/1244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Slavětínská.

Additional information

Dedicated to the memory of Jan Sejbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavětínská, L., Mosinger, J., Dračínský, M. et al. NMR study of host–guest complexes of disulfonated derivatives of 9, 10-diphenylanthracene and corresponding endoperoxides with cyclodextrins. J Incl Phenom Macrocycl Chem 61, 241–250 (2008). https://doi.org/10.1007/s10847-008-9416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9416-6

Keywords

Navigation