Skip to main content
Log in

Spectroscopic characterization of the binding and isomerization cycle of Brooker’s merocyanine with α-, β-, and γ-cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Complexes of Brooker’s merocyanine dye with α-, β- and γ-cyclodextrin (CD) have been characterized to determine the relative strength and thermodynamics of binding, as well as the effect of binding on the protolytic-photochemical isomerization cycle of the dye. It was found that the dye binds most tightly to β-CD, with a binding equilibrium constant of 430 M−1, in agreement with previous results (Hamasaki et al. J. Incl. Phenom. Mol. Rec. Chem. 13, 349–359 (1992)), while α-CD and γ-CD complexes have a binding constant of approximately 110 M−1 and 70 M−1, respectively, determined using absorbance and fluorescence spectroscopy. The isomerization cycle for the dye in α- and γ-CD complexes was found to be the same as for the free dye. Complexation with β-CD, however, resulted in depressed trans-to-cis photoisomerization in acidic conditions followed by spontaneous cis-to-trans isomerization (with the addition of base). Thermodynamic results also indicated differences between α-CD (ΔS° = −48 J K−1) and β-CD (ΔS° =  +12 J K−1) complexes. There was no temperature dependence observed for the γ-CD complexes. These results can be justified in terms of the location of the dye molecule within the cyclodextrin cavity for each of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Szejtli, J. (ed.): Cyclodextrin Technology. Kluwer Academic Publisher, Dordrecht (1988)

    Google Scholar 

  2. Steed, J.W., Atwood, J.L. (ed.): Supramolecular Chemistry. Wiley, New York (2000)

    Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  4. Duveneck, G.L., Sitzmann, E.V., Eisenthal, K.B., Turro, N.J.: Picosecond laser studies on photochemical reactions in restricted environments: the photoisomerization of trans-stilbene complexed to cyclodextrins. J. Phys. Chem. 93, 7166–7170 (1989)

    Article  CAS  Google Scholar 

  5. Kasatani, K., Ohashi, M., Kawasaki, M., Sato, H.: Cyanine dye-cyclodextrin systems. Enhanced dimerization of the dye. Chem. Lett. 1633–1636 (1987)

  6. Dyck, A.S.M., Kisiel, U., Bohne, C.: Dynamics for the assembly of pyrene-γ -cyclodextrin host-guest complexes. J. Phys. Chem. B. 107, 11652–11659 (2003)

    Article  CAS  Google Scholar 

  7. Brooker L.G.S., Keyes, C.H., Sprague, R.H., Van Dyke R.H., Van Zandt E., White F.L., Cressman, H.W.J., Dent, S.G.: Color and constitution. X. Absorption of the merocyanines. J. Am. Chem. Soc. 73, 5332–5350 (1951)

    Article  CAS  Google Scholar 

  8. Brooker L.G.S., Keyes, C.H., Heseltine, D.W.: Color and constitution. XI. Anhydronium bases of p-hydroxystyryl dyes as solvent polarity indicators. J. Am. Chem. Soc. 73, 5350–5356 (1951)

    Article  CAS  Google Scholar 

  9. Da Silva, D.C., Ricken, I., do R. Silva, M.A., Machado, V.G.: Solute-solvent and solvent–solvent interaction in the preferential solvation of Brooker’s merocyanine in binary solvent mixtures. J. Phys. Org. Chem. 15, 420–427 (2002)

  10. Catalan, J., Meno, E., Meutermans, W., Elguero, J.: Solvatochromism of a typical merocyanine: Stilbazolium Betain and its 2,6-di-tert-butyl derivative. J. Phys. Chem. 96(9), 3615–3621 (1992)

    Article  CAS  Google Scholar 

  11. De Ridder, D.J.A., Heijedrijk, D., Schenk, H., Dommisse, R.A., Lemiere, G.L., Lepoivre, J.A., Alderweireldt, F.A.: Structure of 4-{2-[1-methyl-4(1H)-pyridylidene]ethylidene}cyclohexa-2,5-dien-1-one trihydrate. Acta. Crystallogra., Sect. C: Crys. Struc. Commun. 46, 2197–2199 (1990)

    Article  Google Scholar 

  12. Morley, J.O., Morley, R.M., Docherty, R., Charlton, M.H.: Fundamental studies on Brooker’s merocyanine. J. Am. Chem. Soc. 119, 10192–10202 (1997)

    Article  CAS  Google Scholar 

  13. Morley, J.O., Morley, R.M., Fitton, A.L.: Spectroscopic studies on Brooker’s merocyanine. J. Am. Chem. Soc. 120(44), 11479–11488 (1998)

    Article  CAS  Google Scholar 

  14. Gains, G.L.: Photoisomerization of Stilbazolium chromophores with potential nonlinear optical applications. Angew. Chem. 99(4), 346–348 (1987)

    Article  Google Scholar 

  15. Steiner, U., Abdel-Kader, M.H., Fisher, P., Kramer, H.E.A.: Photochemical cis/trans isomerization of a stilbazolium betaine. A protolytic/photochemical reaction cycle. J. Am. Chem. Soc. 100(10), 3190–3197 (1978)

    Article  CAS  Google Scholar 

  16. Abdel-Kamer, M.H., Steiner, U.: A molecular reaction cycle with a solvatochromic merocyanine dye: an experiment in photochemistry, kinetics, and catalysis. J. Chem. Educ. 60, 160–162 (1983)

    Article  Google Scholar 

  17. Abdel-Halim, S.T., Abdel-Kamer, M.H., Steiner, U.: Thermal cis-trans isomerization of solvatochromic merocyanines: linear correlations between solvent polarity and adiabatic and diabatic transition energies. J. Phys. Chem. 92, 4324–4328 (1988)

    Article  CAS  Google Scholar 

  18. Oesterhelt, D., Stoeckenius, W.: Functions of a new photoreceptor membrane. Proc. Nat. Acad. Sci. USA 70(10), 2853–2857 (1973)

    Article  CAS  Google Scholar 

  19. Davis, W.B., Svec, W.A., Ratner, M.A., Wasielewski, M.R.: Molecular-wire behavior in p-phenylenevinylene oligomers. Nature 396, 60–63 (1998)

    Article  CAS  Google Scholar 

  20. Hamasaki, K., Nakamura, A., Ueno, A., Toda, M.R.: Trans-cis photoisomerization of 1-methyl-4-(4'-hydroxystyryl)pyridinium in inclusion complexes of β -cyclodextrin and its derivatives. J. Incl. Phenom. Mol. Rec. Chem. 13(14), 349–359 (1992)

    Article  CAS  Google Scholar 

  21. Venturini, C. de G., Andreaus, J., Machado, V.G., Machado, C.: Solvent effects in the interaction of methyl-(-cyclodextrin with solvatochromic merocyanine dyes. Org. Biomol. Chem. 3, 1751–1756 (2005)

    Article  CAS  Google Scholar 

  22. Suzuki, M., Ito, K., Fushimi, C., Kondo, T.: Application of freezing point depression to drug interaction studies. II. A study of cyclodextrin complex formation by a freezing point depression method. Chem. Pharm. Bull. 41, 942–945 (1993)

    CAS  Google Scholar 

  23. Gelb, R.I., Schwartz, L.M., Bradshaw, J.J., Laufer, D.A.: Acid dissociation of cyclohexaamylose and cycloheptaamylose. Bioorg. Chem. 9(3), 299–304 (1980)

    Article  CAS  Google Scholar 

  24. Gelb, R.I., Schwartz, L.M., Laufer, D.A.: Acid dissociation of cyclooctaamylose. Bioorg. Chem. 11(3), 274–280 (1982)

    Article  CAS  Google Scholar 

  25. Hirose, K.: A practical guide for the determination of binding constants. J. Inclus. Phenom. Macrocyclic Chem. 39, 193–209 (2001)

    Article  CAS  Google Scholar 

  26. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  27. Hinze, W.L, Dai, F., Frankewich, R.P., Thimmaiah, K.N., Szejtli, J.: Cyclodextrins as reagents in analytical chemistry and diagnosis. In: Szejtli J., Osa, T., (eds.) Cyclodextrins. Comprehensive Molecular Chemistry, vol. 3, p 588. Peragammon Press, Tarrytown, NY (1996)

    Google Scholar 

  28. Ronayette, J., Arnold, R., Lebourgeouis, P., Lemaire, J.: Photochemical isomerization of azobenzene in solution. I. Can. J. Chem. 52, 1848–1857 (1974)

    Article  CAS  Google Scholar 

  29. Bortolus, P., Monti, S.: Cis-trans photoisomerization of azobenzene. Solvent and triplet donors effects. J. Phys. Chem. 83, 648–652 (1979)

    Article  CAS  Google Scholar 

  30. Roberts, E.L., Chou, P.T., Alexander, T.A., Agbaria, R.A., Warner, I.M.: Effects of organized media on the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline. J. Phys. Chem. 99, 5431–5437 (1995)

    Article  CAS  Google Scholar 

  31. Kusumoto, Y.: A spectrofluorimetric method for determining the association constants of pyrene with cyclodextrins based on polarity variation. Chem. Phys. Lett. 136, 535–538 (1987)

    Article  CAS  Google Scholar 

  32. Tawarah, K.M.: A thermodynamic study of the association of the acid form of methyl orange with cyclodextrins. Dyes and Pigments 19(1), 59–67 (1992)

    Article  CAS  Google Scholar 

  33. Al-Rawashdeh, N.A.F.: Interactions of Nabumetone with γ-cyclodextrin studied by fluorescence measurements. J. Inclus. Phenem. Mol. Rec. Chem. 51, 27–32 (2005)

    Article  CAS  Google Scholar 

  34. Vogel, V.R., Pastukhov, A.V., Kotelnikov, A.I.: Catalysis of the back thermal cis-trans isomerization reaction of stilbazolium betaine by metmyoglobin. J. Fluor. 9(3), 209–212 (1999)

    Article  CAS  Google Scholar 

  35. Sueishi, Y., Hishikawa, H.: Complexation of 4-dimethylaminoazobenzene with various kinds of cyclodextrins: Effects of cyclodextrins on the thermal cis-to-trans isomerization. Int. J. Chem. Kinetics 34(8), 481–487 (2002)

    Article  CAS  Google Scholar 

  36. Asano, T., Okada, T., Shinkai, S., Shigematsu, K., Kusano, Y., Manabe, O.: Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. J. Am. Chem. Soc. 103, 5161–5165 (1981)

    Article  CAS  Google Scholar 

  37. Retna Raj, C., Ramaraj, R.: γ-cyclodextrin induced intermolecular excimer formation of Thioflavin T. Chem. Phys. Lett. 273, 285–290 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Holt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, J.S., Campitella, A., Rich, A. et al. Spectroscopic characterization of the binding and isomerization cycle of Brooker’s merocyanine with α-, β-, and γ-cyclodextrins. J Incl Phenom Macrocycl Chem 61, 251–258 (2008). https://doi.org/10.1007/s10847-008-9415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9415-7

Keywords

Navigation