Skip to main content
Log in

Nanoscale substrate recognition by porphyrin dendrimers with patched structures

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Dendrimer technology has enabled us to build macromolecules with nanosized defined structures. By introducing unsymmetrical patched structures in dendrimers, sophisticated artificial receptors exhibiting nanoscale substrate recognition can be obtained. In this review article, our recent studies on molecular recognition by porphyrin dendrimers with patched structures are summarized. Three topics are presented: (1) oligopeptide-patched dendrimers as a nanoscale receptor of cytochrome c protein; (2) pocket dendrimers as a nanoscale receptor for bimolecular guest accommodation; and (3) energy transfer in unsymmetrical dendrimers. These dendrimers nicely mimic proteins and enzymes, and also act as photofunctional artificial receptors, in which porphyrin’s strong photoabsorption and intense fluorescence signals can respond sensitively to the substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fréchet, J.M.J., Tomalia, D.A.: Dendrimers and Other Dendritic Polymers, p. 647. Wiley, Chichester (2001)

    Google Scholar 

  2. Newkome, G.R., Moorefield, C.N., Vögtle, F.: Dendrimers and Dendrons: Concepts, Syntheses, Applications, p. 623. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  3. Grayson, S.M., Fréchet, J.M.J.: Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 101, 3819–3867 (2001)

    Article  CAS  Google Scholar 

  4. Hecht, S., Fréchet, J.M.J.: Dendritic encapsulation of function: Applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Ed. 40, 74–91 (2001)

    Article  CAS  Google Scholar 

  5. Smith, D.K., Diederich, F.: Functional dendrimers: Unique biological mimics. Chem. Eur. J. 4, 1353–1361 (1998)

    Article  CAS  Google Scholar 

  6. Diederich, F., Felber, B.: Supramolecular chemistry and self-assembly special feature: Supramolecular chemistry of dendrimers with functional cores. Proc. Natl. Acad. Sci. USA 99, 4778–4781 (2002)

    Article  CAS  Google Scholar 

  7. Boas, U., Heegaard, P.M.H.: Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63 (2004)

    Article  CAS  Google Scholar 

  8. van Heerbeek, R., Kamer, P.C.J., van Leeuwen, P.W.N.M., Reek, J.N.H.: Dendrimers as support for recoverable catalysts and reagents. Chem. Rev. 102, 3717–3756 (2002)

    Article  CAS  Google Scholar 

  9. Newkome, G.R., Kotta, K.K., Moorefield, C.N.: Design, synthesis, and characterization of conifer-shaped dendritic architectures. Chem. Eur. J. 12, 3726–3734 (2006)

    Article  CAS  Google Scholar 

  10. Wu, P., Malkoch, M., Hunt, J.N., Vestberg, R., Kaltgrad, E., Finn, M.G., Fokin, V.V., Sharpless, K.B., Hawker, C.J.: Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun. 5775–5777 (2005)

  11. Ong, W., Gómez-Kaifer, M., Kaifer, A.E.: Dendrimers as guests in molecular recognition phenomena. Chem. Commun. 1677–1683 (2004)

  12. Weyermann, P., Gisselbrecht, J.-P., Boudon, C., Diederich, F., Gross, M.: Dendritic iron porphyrins with tethered axial ligands: New model compounds for cytochromes. Angew. Chem. Int. Ed. 38, 3215–3219 (1999)

    Article  CAS  Google Scholar 

  13. Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)

    Article  CAS  Google Scholar 

  14. Park, H.S., Lin, Q., Hamilton, A.D.: Protein surface recognition by synthetic receptors: A route to novel submicromolar inhibitors for α-chymotrypsin. J. Am. Chem. Soc. 121, 8–13 (1999)

    Article  CAS  Google Scholar 

  15. Zhou, H., Baldini, L., Hong, J., Wilson, A.J., Hamilton, A.D.: Pattern recognition of proteins based on an array of functionalized porphyrins. J. Am. Chem. Soc. 128, 2421–2425 (2006)

    Article  CAS  Google Scholar 

  16. Hayashi, T., Hisaeda, Y.: New functionalization of myoglobin by chemical modification of heme-propionates. Acc. Chem. Res. 35, 35–43 (2002)

    Article  CAS  Google Scholar 

  17. Sadler, K., Tam, J.P.: Peptide dendrimers: Applications and synthesis. Rev. Mol. Biotechnol. 90, 195–229 (2002)

    Article  CAS  Google Scholar 

  18. Braun, M., Atalick, S., Guldi, D.M., Lanig, H., Brettreich, M., Burghardt, S., Hatzimarinaki, M., Ravanelli, E., Prato, M., van Eldik, R., Hirsch, A.: Electrostatic complexation and photoinduced electron transfer between Zn-cytochrome c and polyanionic fullerene dendrimers. Chem. Eur. J. 9, 3867–3875 (2003)

    Article  CAS  Google Scholar 

  19. Paul, D., Miyake, H., Shinoda, S., Tsukube, H.: Proteo-dendrimers designed for complementary recognition of cytochrome c: Dendrimer architecture toward nanoscale protein complexation. Chem. Eur. J. 12, 1328–1338 (2006)

    Article  CAS  Google Scholar 

  20. Ng, S., Smith, M.B., Smith, H.T., Millett, F.: Effect of modification of individual cytochrome c lysines on the reaction with cytochrome b 5 . Biochemistry 16, 4975–4978 (1977)

    Article  CAS  Google Scholar 

  21. Habicher, T., Diederich, F., Gramlich, V.: Catalytic dendrophanes as enzyme mimics: Synthesis, binding properties, micropolarity effect, and catalytic activity of dendritic thiazolio-cyclophanes. Helv. Chim. Acta 82, 1066–1095 (1999)

    Article  CAS  Google Scholar 

  22. Mattei, S., Wallimann, P., Kenda, B., Amrein, W., Diederich, F.: Dendrophanes: Water-soluble dendritic receptors as models for buried recognition sites in globular proteins. Helv. Chim. Acta 80, 2391–2417 (1997)

    Article  CAS  Google Scholar 

  23. Jiang, D.-L., Aida, T.: A dendritic iron porphyrin as a novel haemoprotein mimic: Effects of the dendrimer cage on dioxygen-binding activity. Chem. Commun. 1523–1524 (1996)

  24. Ballauff, M., Likos, C.N.: Dendrimers in solution: Insight from theory and simulation. Angew. Chem. Int. Ed. 43, 2998–3020 (2004)

    Article  CAS  Google Scholar 

  25. Kaanumalle, L.S., Ramesh, R., Maddipatla, V.S.N.M., Nithyanandhan, J., Jayaraman, N., Ramamurthy, V.: Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. J. Org. Chem. 70, 5062–5069 (2005)

    Article  CAS  Google Scholar 

  26. Garcia-Martinez, J.C., Lezutekong, R., Crooks, R.M.: Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the stille reaction. J. Am. Chem. Soc. 127, 5097–5103 (2005)

    Article  CAS  Google Scholar 

  27. Tomoyose, Y., Jiang, D.-L., Jin, R.-H., Aida, T., Yamashita, T., Horie, K., Yashima, E., Okamoto, Y.: Aryl ether dendrimers with an interior metalloporphyrin functionality as a spectroscopic probe: Interpenetrating interaction with dendritic imidazoles. Macromolecules 29, 5236–5238 (1996)

    Article  CAS  Google Scholar 

  28. Bhyrappa, P., Young, J.K., Moore, J.S., Suslick, K.S.: Dendrimer-metalloporphyrins: Synthesis and catalysis. J. Am. Chem. Soc. 118, 5708–5711 (1996)

    Article  CAS  Google Scholar 

  29. Sen, A., Suslick, K.S.: Shape-selective discrimination of small organic molecules. J. Am. Chem. Soc. 122, 11565–11566 (2000)

    Article  CAS  Google Scholar 

  30. Hof, F., Craig, S.L., Nuckolls, C., Rebek, J. Jr.: Molecular encapsulation. Angew. Chem. Int. Ed. 41, 1488–1508 (2002)

    Article  CAS  Google Scholar 

  31. Fiedler, D., Leung, D.H., Bergman, R.G., Raymond, K.N.: Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 38, 349–358 (2005)

    Article  CAS  Google Scholar 

  32. Yoshizawa, M., Fujita, M.: A self-assembled coordination cage as a molecular flask. Pure Appl. Chem. 77, 1107–1112 (2005)

    Article  CAS  Google Scholar 

  33. Shinoda, S., Ohashi, M., Tsukube, H.: Pocket dendrimers as nanoscale receptors for bimolecular guest accommodation. Chem. Eur. J. 13, 81–89 (2007)

    Article  CAS  Google Scholar 

  34. De Schryver, F.C., Vosch, T., Cotlet, M., van der Auweraer, M., Müllen, K., Hofkens, J.: Energy dissipation in multichromophoric single dendrimers. Acc. Chem. Res. 38, 514–522 (2005)

    Article  CAS  Google Scholar 

  35. Chen, J., Li, S., Zhang, L., Li, Y.-Y., Chen, J., Yang, G., Li, Y.: Direct observation of the intramolecular triplet-triplet energy transfer in poly(aryl ether) dendrimers. J. Phys. Chem. B 110, 4047–4053 (2006)

    Article  CAS  Google Scholar 

  36. Mo, Y.-J., Jiang, D.-L., Uyemura, M., Aida, T., Kitagawa, T.: Energy funneling of IR photons captured by dendritic antennae and acceptor mode specificity: Anti-Stokes resonance Raman studies on iron(III) porphyrin complexes with a poly(aryl ether) dendrimer framework. J. Am. Chem. Soc. 127, 10020–10027 (2005)

    Article  CAS  Google Scholar 

  37. Thomas, K.R.J., Thompson, A.L., Sivakumar, A.V., Bardeen, C.J., Thayumanavan, S.: Energy and electron transfer in bifunctional non-conjugated dendrimers. J. Am. Chem. Soc. 127, 373–383 (2005)

    Article  CAS  Google Scholar 

  38. Cotlet, M., Gronheid, R., Habuchi, S., Stefan, A., Barbafina, A., Müllen, K., Hofkens, J., De Schryver, F.C.: Intramolecular directional Förster resonance energy transfer at the single-molecule level in a dendritic system. J. Am. Chem. Soc. 125, 13609–13617 (2003)

    Article  CAS  Google Scholar 

  39. Takahashi, M., Morimoto, H., Miyake, K., Yamashita, M., Kawai, H., Sei, Y., Yamaguchi, K.: Evaluation of energy transfer in perylene-cored anthracene dendrimers. Chem. Commun. 3084–3086 (2006)

  40. Gong, L.-Z., Hu, Q.-S., Pu, L.: Optically active dendrimers with a binaphthyl core and phenylene dendrons: Light harvesting and enantioselective fluorescent sensing. J. Org. Chem. 66, 2358–2367 (2001)

    Article  CAS  Google Scholar 

  41. Choi, M.-S., Aida, T., Yamazaki, T., Yamazaki, I.: Dendritic multiporphyrin arrays as light-harvesting antennae: Effects of generation number and morphology on intramolecular energy transfer. Chem. Eur. J. 8, 2667–2678 (2002)

    Article  CAS  Google Scholar 

  42. Adronov, A., Fréchet, J.M.J.: Light-harvesting dendrimers. Chem. Commun. (feature article) 1701–1710 (2000)

  43. Ahn, T.S., Thompson, A.L., Bharathi, P., Müller, A., Bardeen, C.J.: Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: The role of delocalized excited states and the scaling of light-harvesting efficiency with dendrimer size. J. Phys. Chem. B 110, 19810–19819 (2006)

    Article  CAS  Google Scholar 

  44. Loiseau, F., Campagna, S., Hameurlaine, A., Dehaen, W.: Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior. J. Am. Chem. Soc. 127, 11352–11363 (2005)

    Article  CAS  Google Scholar 

  45. Jiang, D.-L., Aida, T.: Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: Cooperation of dendron subunits for singlet energy transduction. J. Am. Chem. Soc. 120, 10895–10901 (1998)

    Article  CAS  Google Scholar 

  46. Akai, I., Kato, T., Kanemoto, K., Karasawa, T., Ohashi, M., Shinoda, S., Tsukube, H.: Morphology dependence of excitonic energy transfer in light- harvesting dendrimers having benzyl ether-type peripheries. Phys. Stat. Sol. (C) 3, 3420–2425 (2006)

    Article  CAS  Google Scholar 

  47. Akai, I., Kato, T., Okada A., Kanemoto, K., Karasawa, T., Kimura, M., Ohashi, M., Shinoda, S., Tsukube, H.: Depression of excitonic energy transfer by freezing molecular vibrations in meta-linked branching dendrimers. Phys. Stat. Sol. (C) 3, 3414–3419 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Organizing Committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2006 and the opportunity to write this review article. He acknowledges all collaborators for their efforts. He especially thanks Prof. Hiroshi Tsukube for his suggestions and discussion about all the research on dendrimers, Dr. Dharam Paul for his contribution to dendrimer synthesis, and Dr. Ichiro Akai for being a co-worker and for discussion about the energy transfer processes in dendrimers. Figures 4 and 7 were reproduced with permission from the Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

This is a paper selected for “HGCS Japan Award of Excellence 2006”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Shinoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinoda, S. Nanoscale substrate recognition by porphyrin dendrimers with patched structures. J Incl Phenom Macrocycl Chem 59, 1–9 (2007). https://doi.org/10.1007/s10847-007-9315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9315-2

Keywords

Navigation