Skip to main content
Log in

Photophysical behaviours of some 2-styrylindolium dyes in aqueous solutions and in the presence of cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Host–guest inclusion type association between native β-cyclodextrin and randomly substituted methyl-β-CD and two 2-styrylindolium cationic dyes, e.g. 1,3,3-trimethyl-2-(4-diethylaminostyryl)-3H-indolium iodide (D1) and 1,3,3-trimethyl-2-[4-(N-2-cyanoethyl,N-methyl)-aminostyryl]-3H-indolium iodide (D2), are reported. The described indolium derivatives belong to the rarely investigated class of unsymmetrical polymethines. The complex formation was studied in aqueous buffer solutions with two pH values (7.2 and 3) by means of absorption and steady-state fluorescence spectroscopy. The association equilibrium constant (K), the molar absorptivity and the stoichiometry of the complexes were evaluated using the modified Benesi-Hildebrand approach. The complex stability was affected by the pH of the solution and by the type of CD. The results obtained indicate that D1 forms 1:1 complexes with both β-CD and Me-O-β-CD, whereas D2 does not form stable complexes with Me-O-β-CD and in acidic medium. The fluorescent intensity of D1 in the presence of CDs increases over four times relative to the intensity of the pure dye solutions, presumably via inclusion of the dye into the cyclodextrin cavity due to rigidity of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997).

    Article  CAS  Google Scholar 

  2. Liu, L., Guo, Q.X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Mac. Chem. 42, 1–14 (2002).

    Article  CAS  Google Scholar 

  3. Coly, A., Aaron, J.J.: Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Anal. Chim. Acta 360, 129–141 (1998).

    Article  CAS  Google Scholar 

  4. Maafi, M., Laassis, B., Aaron, J.J., Mahedero, M.C., Munoz de la Pena, A., Salinas, F.: Photochemically induced fluorescence investigation of a β-cyclodextrin: Azure A inclusion complex and determination of analytical parameters. J. Incl. Phenom. Mol. Recogn. Chem. 22, 235–247 (1995).

    Article  CAS  Google Scholar 

  5. Gonzalez, M.A., Lopez, M.H.: Determination of fluorene in sea-water by room temperature phosphorescence in organised media. Analyst 123, 2217–2221 (1998).

    Article  Google Scholar 

  6. Scypinski, S., Cline Love, L.J.: Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins. Anal. Chem. 56, 322–327 (1984).

    Article  CAS  Google Scholar 

  7. Duveneck, G.L., Sitzmann, E.V., Eisenthal, K.B., Turro, N.J.: Picosecond laser studies on photochemical reactions in restricted environments: the photoisomerization of trans-stfibene complexed to cyciodextrins. J. Phys. Chem. 93, 7166 (1989).

    Article  CAS  Google Scholar 

  8. Patonay, G., Salon, J., Sowell, J., Strekowski, L.: Noncovalent labeling of biomolecules with red and near-infrared dyes. Molecules 9, 40–49 (2004).

    Article  CAS  Google Scholar 

  9. Deligeorgiev, T.G., Zaneva, D.A., Kim, S.H., Sabnis, R.W.: Preparation of monomethine cyanine dyes for nucleic acid detection. Dyes and Pigments 37, 205–211 (1998).

    Article  CAS  Google Scholar 

  10. Ohashi, M., Kasatani, K., Shinohara, H., Sato, H.: Molecular mechanics studies on inclusion compounds of cyanine dye monomers and dimers in cyclodextrin cavities. J. Am. Chem. Soc. 112, 5824–5830 (1990).

    Article  CAS  Google Scholar 

  11. Kasatani, K., Ohashi, M., Kawazaki, M., Sato, H.: Cyanine dye-cyclodextrin systems. Enhanced dimerization of the dye. Chem. Lett. 1633–1636 (1987).

  12. Matsuzawa, Y., Tamura, S., Matsuzawa, N., Ata, M.: Light stability of a β-cyclodextrin inclusion complex of a cyanine dye. J. Chem. Soc. Faraday Trans. 90(23), 3517–3520 (1994).

    Article  CAS  Google Scholar 

  13. Mitewa, M., Mateeva, N., Antonov, L.: Spectrophotometric investigation on the complexation between chromo- and flouroionophores containing aza-15crown-5 moiety and alkaline and alkaline-earth metal ions. Quim Analitica 16, 153–162 (1997).

    Google Scholar 

  14. Gromov, S.P., Fedorova, O.A., Alfimov, M.V., Druzhinin, S.I., Rusalov, M.V., Uzhinov, B.M.: Crown-containing styryl dyes. 14. Synthesis, luminescence, and complexation of the trans-isomers of chromogenic 15-crown-5-ethers. Izv. Akad. Nauk., Ser. Khim. 10, 2003–2008 (1995).

    Google Scholar 

  15. Nishida, M., Ishii, D., Yoshida, I., Shinkai, S.: Molecular association of water-soluble calixarenes with several stilbene dyes and its application to the facile determination of cationic surfactant concentrations. Bull. Chem. Soc. Jpn. 70, 2131–2140 (1997).

    Article  CAS  Google Scholar 

  16. Metsov, S., Dudev, T., Koleva, V.: Infrared and NMR study of some 2-styrylindolium dyes. J. Mol. Str. 350, 241–246 (1995).

    Article  CAS  Google Scholar 

  17. Kiprianov, Al., Ushenko, I.K.: Colour of the organic dyes and its plane geometry. Zh. Obshch. Khim. 20, 514, (1950).

    CAS  Google Scholar 

  18. Brooker, L.G.S.: Absorption and resonance in dyes. Rev. Mod. Phys. 14, 275–293 (1942).

    Article  CAS  Google Scholar 

  19. Suzuki, H.: Electronic Absorption Spectra, Geometry of Organic Molecules. Academic Press, New York (1967), pp. 367.

    Google Scholar 

  20. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949).

    Article  CAS  Google Scholar 

  21. Yoshida, N., Fujita, Y.: Dynamic aspects in host-guest interactions. 3. Kinetics and mechanism for molecular recognition by hexakis(2,6-di-o-methyl)-α-cyclodextrin of some azo guest molecules. J. Phys. Chem. 99, 3671–3677 (1995).

    Article  CAS  Google Scholar 

  22. Sueishi, Y., Hishikawa, H.: Complexation of 4-dimethylaminoazobenzene with various kinds of cyclodextrins: effects of cyclodextrins on the thermal cis-to-trans isomerization. Int. J. Chem. Kin. 34, 481–487 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the National Science Foundation—Bulgaria is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asya Petinova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petinova, A., Metsov, S., Petkov, I. et al. Photophysical behaviours of some 2-styrylindolium dyes in aqueous solutions and in the presence of cyclodextrins. J Incl Phenom Macrocycl Chem 59, 183–190 (2007). https://doi.org/10.1007/s10847-007-9313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9313-4

Keywords

Navigation