Skip to main content
Log in

Interaction between cucurbit[6]uril and bispyridinecarboxamide

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The interaction between cucurbit[6]uril and N,N′-(m-bispyridinecarboxamide)-1,n-alkane (m = 2, 3, 4; n = 4, 6, 8) has been investigated by 1H-NMR, ESI-MS and single crystal X-ray diffraction method. The results show that cucurbit[6]uril can form pseudorotaxanes with N,N′-(m-bispyridinecarboxamide)-1,6-hexane (m = 2, 3, 4) easily. When the alkyl chain length increases (n = 8), the binding mode is identical, but the binding ability of the host towards guest decreases. In both two cases cucurbit[6]uril shows no selectivity towards positional isomers. However, in the case of n = 4, the binding mode is different, having relations with positional substitution of the guest. Only N,N′-(m-bispyridinecarboxamide)-1,4-butane (m = 2) can form pseudorotaxane with cucurbit[6]uril, while the other two (m = 3, m = 4) form external complex with cucurbit[6]uril. The possible reason for the difference has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 

Similar content being viewed by others

Notes

  1. CB[6]: 1H-NMR (20%DCl/D2O): 4.495 (Hx, d, 12H, J=15.6Hz), 5.645 (Hy, s, 12H), 5.706 (Hz, s, 12H). FAB-MS: m/z 997 [M+H]+. Anal. calcd. for C36H36N24O12·4H2O: C, 40.45; H, 4.12; N, 31.46. Found: C, 40.61; H, 4.29; N, 31.61. 2-H2BPBu: 1H-NMR (20% DCl/D2O): 1.817 (H2, s, 4H), 3.570 (H1, s, 4H), 8.342 (Hb, t, 2H), 8.724 (Hc, d, 2H), 8.849 (Hd, t, 2H), 9.019 (Ha, d, 2H). FAB-MS: m/z 299 [M+H]+. Anal. calcd. for C16H18N4O2: C, 64.43; H, 6.04; N, 18.79. Found: C, 64.46 ; H, 6.54 ; N, 18.85. 2-H2BPH: 1H-NMR (20% DCl/D2O): 1.456 (H3, s, 4H), 1.714 (H2, s, 4H), 3.510 (H1, t, 4H), 8.344 (Hb, t, 2H), 8.715 (Hc, d, 2H), 8.849 (Hd, t, 2H), 9.019 (Ha, d, 2H). FAB-MS: m/z 327 [M +H]+. Anal. calcd. for C18H22N4O2: C, 66.26; H, 6.74; N, 17.18. Found: C, 66.24; H, 6.79; N, 17.17. 2-H2BPO: 1H-NMR (20% DCl/D2O): 1.361 (H3, H4, s, 8H), 1.682 (H2, s, 4H), 3.488 (H1, t, 4H), 8.342 (Hb, t, 2H), 8.711 (Hc, d, 2H), 8.848 (Hd, t, 2H), 9.019 (Ha, d, 2H). FAB-MS: m/z 355 [M+H]+. Anal. calcd. for C20H26N4O2: C, 67.42; H, 7.30; N, 15.73. Found: C, 67.26; H, 7.43; N, 15.63. 3-H2BPBu 1H-NMR (20% DCl/D2O): 1.795 (H2, s, 4H), 3.523 (H1, s, 4H), 8.279 (Hc, t, 2H), 9.035 (Hb, Hd, t, 4H), 9.276 (Ha, s, 2H). FAB-MS: m/z 299 [M+H]+. Anal. calcd. for C16H18N4O2: C, 64.43, H, 6.04, N, 18.79. Found: C, 64.73; H, 5.99; N, 18.66. 3-H2PBH: 1H-NMR (20% DCl/D2O): 1.448 (H3, s, 4H), 1.689 (H2, s, 4H), 3.450 (H1, t, 4H), 8.249 (Hc, t, 2H), 9.006 (Hb, Hd, t, 4H), 9.225 (Ha, s, 2H). FAB-MS: m/z 327 [M+H]+. Anal. calcd. for C18H22N4O2: C, 66.26; H, 6.74; N, 17.18. Found: C, 66.24; H, 6.79; N, 17.17. 3-H2BPO: 1H-NMR (20% DCl/D2O): 1.359 (H3, H4, s, 8H), 1.659 (H2, s, 4H), 3.430 (H1, s, 4H), 8.249 (Hc, t, 2H), 9.002 (Hb, Hd, d, 4H), 9.219 (Ha, s, 2H). MS: m/z 355 [M+H]+. Anal. calcd. for C20H26N4O2: C, 67.42; H, 7.30; N, 15.73. Found: C, 67.78; H, 7.25; N, 15.67. 4-H2BPBu 1H-NMR (20% DCl/D2O): 1.796 (H2, s, 4H), 3.531 (H1, s, 4H), 8.452 (Ha, d, 4H), 9.047 (Hb, d, 4H). FAB-MS: m/z 299 [M+H]+. Anal. calcd. for C16H18N4O2 : C, 64.43 ; H, 6.04; N, 18.79. Found: C, 64.25; H, 6.212; N, 18.83. 4-H2BPH. 1H-NMR (20% DCl/D2O): 1.453 (H3, s, 4H), 1.698 (H2, s, 4H), 3.468 (H1, t, 4H), 8.435 (Ha, s, 4H), 9.044 (Hb, s, 4H). FAB-MS: m/z 327 [M+H]+. Anal. calcd. for C18H22N4O2: C, 66.26; H, 6.74; N, 17.18. Found: C, 66.24; H, 6.79; N, 17.17. 4-H2BPO 1H-NMR (20% DCl/D2O): 1.360 (H3, H4, s, 8H), 1.662 (H2, s, 4H), 3.434 (H1, t, 4H), 8.394 (Ha, d, 4H), 9.006 (Hb, d, 4H). FAB-MS: m/z 355 [M+H]+. Anal. calcd. for C20H26N4O2: C, 67.42; H, 7.30; N, 15.73. Found: C, 67.69; H, 7.288; N, 15.68.

References

  1. Freeman, W.A., Mock, W.L., Shih, N.-Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  2. Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  3. (a) Mock, W.L., Shih, N.-Y.: Host-guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983); (b) Mock, W.L., Shih, N.-Y.: Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986); (c) Mock, W.L., Shih, N.-Y.: Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. Dynamics of molecular recognition involving cucurbituril. J. Am. Chem. Soc. 110, 4706–4710 (1988); (d) Mock, W.L., Shih, N.-Y.: J. Am. Chem. Soc. 111, 2697–2699 (1989)

    Google Scholar 

  4. (a) Buschmann, H.-J., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chem. Acta. 193, 93–97 (1992); (b) Meschke, C., Buschmann, H.-J., Schollmeyer, E.: Complexes of cucurbituril with alkyl mono- and diammonium ions in aqueous formic acid studied by calorimetric titrations. Thermochim. Acta. 297, 43–48 (1997); (c) Buschmannn, H.-J., Schollmeyer, E.: Cucurbituril and β-Cyclodextrin as Hosts for the Complexation of Organic Dyes. J. Incl. Phenom. Macrocycl. Chem. 29, 167–174 (1997); (d) Buschmann, H.-J., Jansen, K., Schollmeyer, E.: The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations. Thermochim. Acta. 317, 95–98 (1998); (e) Buschmann, H.-J., Jansen, K., Meschke, C., Schollmeyer, E.: Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. J. Solution. Chem. 27, 135–140 (1998); (f) Buschmannn, H.-J., Jansen, K., Schollmeyer, E.: Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Themochim. Acta. 346, 33–36 (2000); (g) Buschmannn, H.-J., Jansen, K., Schollmeyer, E.: Cucurbituril and α- and β-cyclodextrins as ligands for the complexation of nonionic surfactants and polyethyleneglycols in aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. 37, 231–236 (2000); (h) Jansen, K., Buschmannn, H.-J., Wego, A., Döpp, D., Mayer, C., Drexler, H.-J., Hildt, H.-J., Schollmeyer, E.: Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macrocycl. Chem. 39, 357–363 (2001); (i) Buschmannn, H.-J., Cleve, E., Jansen, K., Schollmeyer, E.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta. 437, 157–163 (2001); (j) Buschmannn, H.-J., Jansen, K., Schollmeyer, E.: Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg. Chem. Commun. 6, 531–534 (2003); (k) Buschmannn, H.-J., Mutihac, L., Mutihac, R.C., Schollmeyer, E.: Complexation behavior of cucurbit[6]uril with short polypeptides. Thermochim. Acta. 430, 79–82 (2005)

    Google Scholar 

  5. (a) Jeon, Y.M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996); (b) Whang, D., Heo, J., Park, J. H., Kim, K.: A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium Ion complexed cucurbituril. Angew. Chem. Int. Ed. 37, 78–80 (1998)

    Google Scholar 

  6. (a) Wagner, B.D., MacRae, A.I.: The lattice inclusion compound of 1, 8-ANS and cucurbituril: a unique fluorescent solid. J. Phys. Chem. B. 103, 10114–10119 (1999); (b) Wagner, B.D., Fitzpatrick, S.J., Gill, M.A., MacRae, A.I., Stojanovic, N.: A fluorescent host-guest complex of cucurbituril in solution: a molecular Jack O’Lantern. Can. J. Chem. 79, 1101–1104 (2001); (c) Marquez, C., Nau, W.M.: Two mechanisms of slow host-guest complexation between cucurbit[6]uril and cyclohexylmethylamine: pH-responsive supramolecular kinetics. Angew. Chem. Int. Ed. 40, 3155–3160 (2001); (d) Marquez, C., Hudgins, R.R., Nau, W.M.: Mechanism of host-guest complexation by cucurbituril. J. Am. Chem. Soc. 126, 5806–5816 (2004); (e) Rankin, M.A., Wagner, B.D.: Fluorescence enhancement of curcumin upon inclusion into cucurbituril. Supramol. Chem. 16, 513–519 (2004)

    Google Scholar 

  7. (a) Meschke, C., Buschmann, H.-J., Schollmeyer, E.: Synthesis of mono-, oligo- and polyamide-cucurbituril rotaxanes. Macromol. Rapid Commun. 19, 59–63 (1998); (b) Meschke, C., Buschmann, H.-J., Schollmeyer, E.: Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril. Polymer 40, 945–949 (1999); (c) Choi, S.W., Lee, J.W., Ko, Y.H., Kim, K.: Pseudopolyrotaxanes made to order: cucurbituril threaded on polyviologen. Macromolecules 35, 3526–3531 (2002); (d) Tan, Y.B., Choi, S.W., Lee, J.W., Ko, Y.H., Kim, K.: Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules 35, 7161–7165 (2002); (e) Hou, Z.S., Tan, Y.B., Kim, K., Zhou, Q.F.: Synthesis, characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril[6] and poly-N1 - (4-vinylbenzyl)-1,4-diaminobutane dihydrochloride. Polymer 47, 742–750 (2006); (f) Hou, Z.S., Tan, Y.B., Zhou, Q.F.: Side-chain pseudopolyrotaxanes by threading cucurbituril[6] onto quaternized poly-4-vinylpyridine derivative: Synthesis and properties. Polymer 47, 5267–5274 (2006)

    Google Scholar 

  8. (a) Whang, D., Jeon, Y.M., Heo, J., Kim, K.: Self-assembly of a polyrotaxane containing a cyclic “bead” in every structural unit in the solid state: cucurbituril molecules threaded on a one-dimensional coordination polymer. J. Am. Chem. Soc. 118, 11333–11334 (1996); (b) Whang, D., Kim, K.: Polycatenated two-dimensional polyrotaxane net. J. Am. Chem. Soc. 119, 451–452 (1997); (c) Whang, D., Park, K.M., Heo, J., Ashton, P., Kim, K.: Molecular necklace: quantitative self-assembly of a cyclic oligorotaxane from nine molecules. J. Am. Chem. Soc. 120, 4899–4900 (1998); (d) Roh, S.G., Park, K.M., Park, G.J., Sakamoto, S., Yamaguchi, K., Kim, K.: Synthesis of a five-membered molecular necklace: a 2+2 approach. Angew. Chem. Int. Ed. 38, 637–641 (1999); (e) Heo, J., Kim, S.Y., Whang, D., Kim, K.: Shape-induced, hexagonal, open frameworks: rubidium ion complexed cucurbituril. Angew. Chem. Int. Ed. 38, 641–643 (1999); (f) Heo, J., Kim, J., Whang, D., Kim, K.: Columnar one-dimensional coordination polymer formed with a metal ion and a host-guest complex as building blocks: potassium ion complexed cucurbituril. Inorg. Chim. Acta. 297, 307–312 (2000); (g) Lee, J.W., Ko, Y.H., Park, S.H., Yamaguchi, K., Kim, K.: Novel pseudorotaxane-terminated dendrimers: supramolecular modification of dendrimer periphery. Angew. Chem. Int. Ed. 40, 746–749 (2001); (h) Park, K.M., Kim, S.Y., Heo, J., Whang, D., Sakamoto, S., Yamaguchi, K., Kim, K.: Designed self-assembly of molecular necklaces. J. Am. Chem. Soc. 124, 2140–2147 (2002); (i) Park, K.M., Whang, D., Lee, E., Heo, J., Kim, K.: Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. Chem. Eur. J. 8, 498–508 (2002); (j) Park, K.M., Roh, S.G., Lee, E., Kim, J., Kim, H.J., Lee, J., Kim, K.: Construction of a square-wave-shaped one-dimensional polyrotaxane using a preorganized L-shaped pseudorotaxane. Supramol. Chem. 14, 153–158 (2002); (k) He, X.Y., Li, G., Chen, H.L.: A new cucurbituril-based metallo-rotaxane. Inorg. Chem. Commun. 5, 633–636 (2002); (l) Zhang, F., Yajima, T., Li, Y.Z., Xu, G.Z., Chen, H.L., Liu, Q.T., Yamauchi, O.: Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(II) complexes. Angew. Chem. Int. Ed. 44, 3402–3407 (2005)

    Google Scholar 

  9. (a) Mock, W.L., Pierpont, J.: A cucurbituril-based molecular switch. J. Chem. Soc., Chem. Commun. 1509–1511 (1990); (b) Jun, S.I., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Lett. 41, 471–475 (2000)

    Google Scholar 

  10. For a recent review: Belda, O., Moberg, C.: Bispyridylamides-coordination chemistry and applications in catalytic reactions. Coordin. Chem. Rev. 249, 727–740 (2005)

    Google Scholar 

  11. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and Its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  Google Scholar 

  12. Sarkar, M., Biradha, K.: Amide-to-amide hydrogen bonds in the presence of a pyridine functionality: crystal structures of Bis(pyridinecarboxamido)alkanes. Cryst. Growth & Des. 6, 202–208 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Mei, L., Zhang, G. et al. Interaction between cucurbit[6]uril and bispyridinecarboxamide. J Incl Phenom Macrocycl Chem 59, 81–90 (2007). https://doi.org/10.1007/s10847-007-9296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9296-1

Keywords

Navigation