Cyclodextrin-based thiacavitands as building blocks for the construction of metallo-nanotubes


Two new cyclodextrin-based ligands with dual exo/endo binding domains were synthesised in high yields by reacting dimesylated or tetramesylated α-CD derivatives with sodium sulfide in either dimethylsulfoxyde or acetone/18-crown-6. The capping of adjacent glucose units was shown to be strongly favoured in both cases. Depending on the nature of the metal precursor being used, one of the synthesised thiacavitands forms either rigid nanotubular dimers or chelate complexes having receptor properties upon metal complexation.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3


  1. 1.

    (a) Cameron, B.R., Loeb, S.J.: Calixarene metalloreceptor. Upper-rim functionalized calix[4]arenes containing an organopalladium binding site. Chem. Commun. 2003–2004 (1996); (b) Cameron, B.R., Loeb, S.J., Yap, G.P.A.: Calixarene metalloreceptors. synthesis and molecular recognition properties of upper-rim functionalized calix[4]arenes containing an organopalladium binding site. Inorg. Chem. 36, 5498–5504 (1997); (c) Fan, M., Zhang, H., Lattman, M.: Control of ligand–metal interaction at the lower rim of p-tert-butylcalix[5]arene. Chem. Commun. 99–100 (1998); (d) Armspach, D.A., Matt, D., Kyritsakas, N.: Anchoring a helical handle across a cavity: the first 2,2′-bipyridyl-capped α-cyclodextrin capable of encapsulating transition metal. Polyhedron 20, 663–668 (2001); (e) Engeldinger, E., Armspach, D., Matt, D.: Capped cyclodextrins. Chem. Rev. 103, 4147–4174 (2003); (f) Armspach, D., Bagatin, I., Engeldinger, E., Jeunesse, C., Harrowfield, J., Lejeune, M., Matt, D.: Conical cavitands as second coordination spheres and protecting environments. Towards metal-centred, intra-cavity reactions. J. Iran Chem. Soc. 1, 10–19 (2004); (g) Darbost, U., Rager, M.-N., Petit, S., Jabin, I., Reinaud, O.: Polarizing a hydrophobic cavity for the efficient binding of organic guests: The case of calix[6]tren, a highly efficient and versatile receptor for neutral or cationic species. J. Am. Chem. Soc. 127, 8517–8525 (2005); (h) Jeunesse, C., Armspach, D., Matt, D.: Playing with podands based on cone-shaped cavities. How can a cavity influence the properties of an appended metal centre? Chem. Commun. 2005, 5603–5614 (2005)

    Google Scholar 

  2. 2.

    (a) Engeldinger, E., Armspach, D., Matt, D.: Cyclodextrin cavities as probes for ligand-exchange processes. Angew. Chem. Int. Ed. 40, 2526–2529 (2001); (b) Engeldinger, E., Armspach, D., Matt, D., Jones, P.G.: Cyclodextrin phosphanes as first and second coordination sphere cavitands. Chem. Eur. J. 9, 3091–3105 (2003)

    Google Scholar 

  3. 3.

    Engeldinger, E., Armspach, D., Matt D., Jones, P.G., Welter, R.: A cyclodextrin diphosphane as a first and second coordination sphere cavitand: evidence for weak C–H⋯Cl–M hydrogen bonds within metal-capped cavities. Angew. Chem. Int. Ed. 41, 2593–2596 (2002)

    Article  CAS  Google Scholar 

  4. 4.

    Poorters, L., Armspach, D., Matt, D.: Selective tetra functionalisation of α-cyclodextrin using the supertrityl protecting group—Synthesis of the first C2-symmetric tetraphosphane based on a cavitand (α-TEPHOS). Eur. J. Inorg. Chem. 1377–1381 (2003)

  5. 5.

    Sheldrick, G.M.: University of Göttingen, Germany (1997)

  6. 6.

    Engeldinger, E., Poorters, L., Armspach, D., Matt, D., Toupet, L.: Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to “introverted” ligands. Chem. Commun. 634–635 (2004)

  7. 7.

    Benazza, M., Halila, S., Viot, C., Danquigny, A., Pierru, C., Demailly, G.: Expedious synthesis of polyhydroxylated selena and thia-heterocycles via Se and S-ring closure of α,ω-dibromoalditols. Tetrahedron 60, 2889–2895 (2004)

    Article  CAS  Google Scholar 

  8. 8.

    Armspach, D., Matt, D.: Metal-capped α-cyclodextrins: squaring the circle. Inorg. Chem. 40, 3505–3509 (2001)

    Article  CAS  Google Scholar 

  9. 9.

    Benmerad, B., Clair, P., Armspach, D., Matt, D., Balegroune, F., Toupet, L.: Sulfur-capped cyclodextrins: a new class of cavitands with extroverted as well as introverted donor functionalities. Chem. Commun. 2678–2680 (2006)

  10. 10.

    Hu, K., Bradshaw, J.S., Pastushok, V.N., Krakowiak, K.E., Dalley, N.K., Zhang, X.X., Izatt, R.M.: Synthesis of proton-ionizable p-nitrophenol-containing tetraazacrown and diazadithiacrown ethers from an aromatic building block prepared via the Einhorn reaction. J. Org. Chem. 63, 4786–4791 (1998)

    Article  CAS  Google Scholar 

  11. 11.

    Poorters, L., Armspach, D., Matt, D., Toupet, L.: A metallocavitand functioning as a container for anions. Formation of non-covalent, linear assemblies mediated by a cyclodextrin-entrapped NO 3 anion. Angew. Chem. (2007, accepted)

  12. 12.

    Hartley, F.R., Murray, S.G., Levason, W., Soutter, H.E., McAuliffe, C.A.: Systematics of palladium(II) and platinum(II) dithioether complexes. The effect of ligand structure upon the structure and spectra of the complexes and upon inversion at coordinated sulfur. Inorg. Chem. Acta 35, 265–277 (1979)

    Article  CAS  Google Scholar 

  13. 13.

    Errington, J., McDonald, W.S., Shaw, B.L.: Preparation of the sixteen-atom ring chelates trans-[M2Cl4{Me3CS(CH2)5SCMe3}2], M = Pd or Pt: crystal structure of trans-[Pd2Cl4{Me3CS(CH2)5SCMe3}2]. J. Chem. Soc., Dalton Trans. 2309–2311 (1980)

Download references


We thank the Agence Nationale de la Recherche for financial support (ANR Watercat).

Author information



Corresponding author

Correspondence to Dominique Armspach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Armspach, D., Poorters, L., Matt, D. et al. Cyclodextrin-based thiacavitands as building blocks for the construction of metallo-nanotubes. J Incl Phenom Macrocycl Chem 57, 243–250 (2007).

Download citation


  • Cyclodextrin
  • Metallocavitand
  • Nanotube
  • Sulfur
  • Transition metals