Advertisement

Cyclodextrin-based thiacavitands as building blocks for the construction of metallo-nanotubes

  • Dominique Armspach
  • Laurent Poorters
  • Dominique Matt
  • Belkacem Benmerad
  • Peter Jones
  • Ina Dix
  • Loic Toupet
Original Article

Abstract

Two new cyclodextrin-based ligands with dual exo/endo binding domains were synthesised in high yields by reacting dimesylated or tetramesylated α-CD derivatives with sodium sulfide in either dimethylsulfoxyde or acetone/18-crown-6. The capping of adjacent glucose units was shown to be strongly favoured in both cases. Depending on the nature of the metal precursor being used, one of the synthesised thiacavitands forms either rigid nanotubular dimers or chelate complexes having receptor properties upon metal complexation.

Keywords

Cyclodextrin Metallocavitand Nanotube Sulfur Transition metals 

Notes

Acknowledgment

We thank the Agence Nationale de la Recherche for financial support (ANR Watercat).

References

  1. 1.
    (a) Cameron, B.R., Loeb, S.J.: Calixarene metalloreceptor. Upper-rim functionalized calix[4]arenes containing an organopalladium binding site. Chem. Commun. 2003–2004 (1996); (b) Cameron, B.R., Loeb, S.J., Yap, G.P.A.: Calixarene metalloreceptors. synthesis and molecular recognition properties of upper-rim functionalized calix[4]arenes containing an organopalladium binding site. Inorg. Chem. 36, 5498–5504 (1997); (c) Fan, M., Zhang, H., Lattman, M.: Control of ligand–metal interaction at the lower rim of p-tert-butylcalix[5]arene. Chem. Commun. 99–100 (1998); (d) Armspach, D.A., Matt, D., Kyritsakas, N.: Anchoring a helical handle across a cavity: the first 2,2′-bipyridyl-capped α-cyclodextrin capable of encapsulating transition metal. Polyhedron 20, 663–668 (2001); (e) Engeldinger, E., Armspach, D., Matt, D.: Capped cyclodextrins. Chem. Rev. 103, 4147–4174 (2003); (f) Armspach, D., Bagatin, I., Engeldinger, E., Jeunesse, C., Harrowfield, J., Lejeune, M., Matt, D.: Conical cavitands as second coordination spheres and protecting environments. Towards metal-centred, intra-cavity reactions. J. Iran Chem. Soc. 1, 10–19 (2004); (g) Darbost, U., Rager, M.-N., Petit, S., Jabin, I., Reinaud, O.: Polarizing a hydrophobic cavity for the efficient binding of organic guests: The case of calix[6]tren, a highly efficient and versatile receptor for neutral or cationic species. J. Am. Chem. Soc. 127, 8517–8525 (2005); (h) Jeunesse, C., Armspach, D., Matt, D.: Playing with podands based on cone-shaped cavities. How can a cavity influence the properties of an appended metal centre? Chem. Commun. 2005, 5603–5614 (2005)Google Scholar
  2. 2.
    (a) Engeldinger, E., Armspach, D., Matt, D.: Cyclodextrin cavities as probes for ligand-exchange processes. Angew. Chem. Int. Ed. 40, 2526–2529 (2001); (b) Engeldinger, E., Armspach, D., Matt, D., Jones, P.G.: Cyclodextrin phosphanes as first and second coordination sphere cavitands. Chem. Eur. J. 9, 3091–3105 (2003)Google Scholar
  3. 3.
    Engeldinger, E., Armspach, D., Matt D., Jones, P.G., Welter, R.: A cyclodextrin diphosphane as a first and second coordination sphere cavitand: evidence for weak C–H⋯Cl–M hydrogen bonds within metal-capped cavities. Angew. Chem. Int. Ed. 41, 2593–2596 (2002)CrossRefGoogle Scholar
  4. 4.
    Poorters, L., Armspach, D., Matt, D.: Selective tetra functionalisation of α-cyclodextrin using the supertrityl protecting group—Synthesis of the first C2-symmetric tetraphosphane based on a cavitand (α-TEPHOS). Eur. J. Inorg. Chem. 1377–1381 (2003)Google Scholar
  5. 5.
    Sheldrick, G.M.: University of Göttingen, Germany (1997)Google Scholar
  6. 6.
    Engeldinger, E., Poorters, L., Armspach, D., Matt, D., Toupet, L.: Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to “introverted” ligands. Chem. Commun. 634–635 (2004)Google Scholar
  7. 7.
    Benazza, M., Halila, S., Viot, C., Danquigny, A., Pierru, C., Demailly, G.: Expedious synthesis of polyhydroxylated selena and thia-heterocycles via Se and S-ring closure of α,ω-dibromoalditols. Tetrahedron 60, 2889–2895 (2004)CrossRefGoogle Scholar
  8. 8.
    Armspach, D., Matt, D.: Metal-capped α-cyclodextrins: squaring the circle. Inorg. Chem. 40, 3505–3509 (2001)CrossRefGoogle Scholar
  9. 9.
    Benmerad, B., Clair, P., Armspach, D., Matt, D., Balegroune, F., Toupet, L.: Sulfur-capped cyclodextrins: a new class of cavitands with extroverted as well as introverted donor functionalities. Chem. Commun. 2678–2680 (2006)Google Scholar
  10. 10.
    Hu, K., Bradshaw, J.S., Pastushok, V.N., Krakowiak, K.E., Dalley, N.K., Zhang, X.X., Izatt, R.M.: Synthesis of proton-ionizable p-nitrophenol-containing tetraazacrown and diazadithiacrown ethers from an aromatic building block prepared via the Einhorn reaction. J. Org. Chem. 63, 4786–4791 (1998)CrossRefGoogle Scholar
  11. 11.
    Poorters, L., Armspach, D., Matt, D., Toupet, L.: A metallocavitand functioning as a container for anions. Formation of non-covalent, linear assemblies mediated by a cyclodextrin-entrapped NO3 anion. Angew. Chem. (2007, accepted)Google Scholar
  12. 12.
    Hartley, F.R., Murray, S.G., Levason, W., Soutter, H.E., McAuliffe, C.A.: Systematics of palladium(II) and platinum(II) dithioether complexes. The effect of ligand structure upon the structure and spectra of the complexes and upon inversion at coordinated sulfur. Inorg. Chem. Acta 35, 265–277 (1979)CrossRefGoogle Scholar
  13. 13.
    Errington, J., McDonald, W.S., Shaw, B.L.: Preparation of the sixteen-atom ring chelates trans-[M2Cl4{Me3CS(CH2)5SCMe3}2], M = Pd or Pt: crystal structure of trans-[Pd2Cl4{Me3CS(CH2)5SCMe3}2]. J. Chem. Soc., Dalton Trans. 2309–2311 (1980)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Dominique Armspach
    • 1
  • Laurent Poorters
    • 1
  • Dominique Matt
    • 1
  • Belkacem Benmerad
    • 2
  • Peter Jones
    • 3
  • Ina Dix
    • 4
  • Loic Toupet
    • 5
  1. 1.Laboratoire de Chimie Inorganique MoléculaireUMR 7177 CNRS-ULP, Université Louis PasteurStrasbourg cedexFrance
  2. 2.Laboratoire de Cristallographie-ThermodynamiqueUSTHB, Faculté de ChimieAlgerAlgeria
  3. 3.Institut für Anorganische und Analytische Chemie TU BraunschweigBraunschweigGermany
  4. 4.Institut für Anorganische Chemie der Universität GöttingenGöttingenGermany
  5. 5.Groupe Matière Condensée et MatériauxUMR 6626, Université de RennesRennes cedexFrance

Personalised recommendations