Skip to main content
Log in

Topological Models for Prediction of Adductability of Branched Aliphatic Compounds in Urea

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The relationship of adductability of branched chain aliphatic compounds in urea with topological descriptors has been investigated. Wiener’s index – a distance-based topological descriptor, molecular connectivity index, an adjacency-based topological descriptor and eccentric connectivity index – an adjacency-cum-distance based topological descriptor were employed for the present study. A data set comprising of 133 branched aliphatic compounds was segregated into training and test sets. The values of all the three topological indices for all the compounds constituting the training and test sets were computed using an in-house computer program. Resulting data of the training set was analyzed and suitable models were developed after identification of the adductible ranges. Subsequently, each compound in the training set was either classified as adductible or non-adductible using these models, which was then compared with the reported adductability in urea. An accuracy of prediction of ≥86% was observed using these models in the training set. These models were then cross-validated using the test set. An accuracy of prediction of ≥80% was observed during cross-validation of these models in an independent test set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takemoto and N. Sonoda: In J.W. Atwood, J.E.D. Davis, and D.D. MacNicol (eds.), Inclusion Compounds, Academic Press, London (1984), pp. 47–67

  2. Harris K.D.M., (2003) Phase Trans. 76: 205

    Article  CAS  Google Scholar 

  3. Bishop R., Dance I.G., (1989) Topics Curr. Chem. 149: 139

    Google Scholar 

  4. Redlich O., Gable C.M., Dunlop A.K., Millar R.W., (1950) J. Am. Chem. Soc 72: 4155

    Google Scholar 

  5. Smith A.E., (1952) Acta Crystalogr. 5: 224

    Article  CAS  Google Scholar 

  6. Zimmerschied W.J., Dinnerstein R.A., Weitkamp A.W., Marschner R.F., (1950) Ind. Eng. Chem 42: 1300

    Article  CAS  Google Scholar 

  7. Harris K.D.M., Thomas J.M., (1990) J. Chem. Soc. Faraday Trans. 86: 2985

    Article  CAS  Google Scholar 

  8. Harris K.D.M., Gameson I., Thomas J.M., (1990) J. Chem. Soc. Faraday Trans. 86: 3153

    Article  Google Scholar 

  9. Schlenk W., (1949) Justus Liebigs Ann. Chem. 565: 204

    CAS  Google Scholar 

  10. Swern D., (1955) Ind. Eng. Chem. 47: 216

    Article  CAS  Google Scholar 

  11. Chao M.H., Harris K.D.M., Kariuki B.M., Bauer C.L., Foxman B.M., (2002) Angew. Chem. Int. Ed. 106: 4032

    CAS  Google Scholar 

  12. Lefort R., Toudic B., Etrillard J., Bourges P., Currar R., Breczewski T., (2001) Eur. Phys. J. B24: 51

    Google Scholar 

  13. Waber Th., Boysen H., Frey F., (2000) Acta Cryst. B56: 132

    Google Scholar 

  14. Hollingsworth M.D., Werner-Zwanziger U., Brown M.E., Chaney J.D., Huffamn J.C., Harris K.D.M., Sharon P.S., (1999) J. Am. Chem. Soc. 121: 9732

    Article  CAS  Google Scholar 

  15. Mayo S.C., Welberry T.R., Brown M., Tarr A., (1998) J. Solid State Chem. 141: 437

    Article  CAS  Google Scholar 

  16. Frost R., Boysen H., Frey F., Jagodzinski H., (1986) J. Phys. Chem. Solids 47: 1089

    Article  Google Scholar 

  17. Shannon I.J., Harris K.D.M., Rennie A.J.O., Webster M.B., (1993) J. Chem. Soc., Faraday Trans. 89: 2023

    Article  CAS  Google Scholar 

  18. Yeo L., Harris K.D.M., (1998) J. Chem. Soc. Faraday Trans. 94: 1633

    Article  CAS  Google Scholar 

  19. Masunov A., Dannenberg J.J., (2000) J. Phys. Chem. 104: 806

    CAS  Google Scholar 

  20. Schiessler R.W., Flitter D., (1950) J. Am. Chem. Soc. 74: 1720

    Article  Google Scholar 

  21. R.A. Findlay: In H.M. Schoen and J.J. Mcketta (eds.), New Chemical Engineering Separation Techniques, Interscience Publishers, New York (1962), pp. 257–318

  22. Katritzky A.R., Gordeeva E.V., (1993) J. Chem. Inf. Comput. Sci. 33: 835

    Article  CAS  Google Scholar 

  23. Randic M., (1990) J. Chem. Inf. Comput. Sci. 31: 311

    Article  Google Scholar 

  24. Trinajstic N., (1983) Chemical graph theory CRC Press Boca Raton, FL

    Google Scholar 

  25. Basak S.C., Balaban A.T., Grunwald G.D., Gute B.D., (2000) J. Chem. Inf. Comput. Sci. 40: 891

    Article  CAS  Google Scholar 

  26. Wiener H., (1947) J. Am. Chem. Soc. 69: 17

    Article  CAS  Google Scholar 

  27. Balaban A.T., (1982) Chem. Phys. Lett. 89: 399

    Article  CAS  Google Scholar 

  28. Hosoya H., (1972) J. Chem. Doc. 12: 181

    Article  CAS  Google Scholar 

  29. Randic M., (1975) J. Am. Chem. Soc. 97: 6609

    Article  CAS  Google Scholar 

  30. Gutman I., Randic M., (1977) Chem. Phys. Lett. 47: 15

    Article  CAS  Google Scholar 

  31. Sharma V., Goswami R., Madan A.K., (1997) J. Chem. Inf. Comput. Sci. 37: 273

    Article  CAS  Google Scholar 

  32. Rose K., Hall L.H., Kier L.B., (2002) J. Chem. Inf. Comput. Sci. 42: 651

    Article  CAS  Google Scholar 

  33. Kier L.B., Hall L.H., Murray W.J., Randic M., (1975) J. Pharm. Sci. 64: 1971

    Article  CAS  Google Scholar 

  34. Gupta S., Singh M., Madan A.K., (2001) J. Comput. Aid Mol. Desig. 15(7): 671–8

    Article  CAS  Google Scholar 

  35. Kier L.B., Hall L.H., (1986) Molecular Connectivity in Structure–Activity Analysis Wiley New York

    Google Scholar 

  36. Karelson M., (2000) Molecular Descriptors in QSAR/QSPR Wiley-Interscience New York

    Google Scholar 

  37. Diudea M.V., (2001) QSPR/QSAR Studies by Molecular Descriptors Nova, Huntington New York

    Google Scholar 

  38. Linstead R.P., Whallwy M., (1950) J. Chem. Soc. 2987

  39. Truter E.V., (1951) J. Chem. Soc 2416

  40. Radell J., Connolly J.W., Cosgrove W.R., (1961) J. Org. Chem. 26: 2960

    Article  CAS  Google Scholar 

  41. Brodman B., Radell J., (1967) Separat. Sci. 2: 139

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakral, S., Madan, A.K. Topological Models for Prediction of Adductability of Branched Aliphatic Compounds in Urea. J Incl Phenom Macrocycl Chem 56, 405–412 (2006). https://doi.org/10.1007/s10847-006-9123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9123-0

Keywords

Navigation