Synthesis of Chiral Resorcinarene-based Hosts and a Mass Spectrometric Study of their Chemistry in Solution and the Gas Phase

Abstract

The syntheses and characterization of new chiral tetrabenzoxazine and tetrakis-(dialkylaminomethyl) resorcinarenes can be achieved through the reaction of resorcinarene with chiral amines and formaldehyde. In order to examine their host–guest chemistry, chiral quaternary ammonium guests were synthesized by methylation of different amines and amino acid methyl esters through a reductive methylation followed by addition of methyl iodide. Subsequent anion exchange of the iodide against tetraphenylborate helps to improve solubility of the salts in organic solvents. After characterization in solution, mass spectrometry is used to examine the resorcinarenes’ chemistry in the gas phase. Interesting implications of the fragmentation behavior for their solution phase chemistry arise, for which a first example is presented. Ammonium ion binding is indicated by mass spectrometry. Nevertheless, chiral recognition between the chiral hosts and pseudoracemic 1:1 mixtures of appropriately deuterium-labeled chiral guest cations is however not observed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Tunstad M., Tucker A., Dalcanale E., Weiser J., Bryant A., Sherman C., Helgeson C., Knobler B., Cram J. (1989). J. Org. Chem. 54, 1305

    Article  CAS  Google Scholar 

  2. 2.

    Timmerman P., Verboom W., Reinhoudt D.N. (1996). Tetrahedron 52, 2663

    Article  CAS  Google Scholar 

  3. 3.

    Steed J.W., Atwood J.L. (2000). Supramolecular Chemistry. Wiley, Chichester.

    Google Scholar 

  4. 4.

    Shivanyuk A., Saadioui M., Broda F., Thondorf I., Vysotsky M.O., Rissanen K., Kolehmainen E., Böhmer V. (2004). Chem. Eur. J. 10, 2138

    Article  CAS  Google Scholar 

  5. 5.

    D. Cram, S. Karbach, E. Kim, B. Knobler, F. Maverick, L.␣Ericson, and C. Helgeson: J. Am. Chem. Soc. 110, 2229 (1988)

  6. 6.

    (a) K. Murayama and K. Aoki, Chem. Commun. 607–608 (1998); (b) K.N. Rose, L.J. Barbour, G.W. Orr, and J. Atwood: Chem. Commun. 407–408 (1998); (c) A. Shivanyuk, K. Rissanen, and E.␣Kolehmainen: Chem. Commun. 1107–1108 (2000); (d) A. Shivanyuk and J. Rebek, Jr.: Chem. Commun. 2374–2375 (2001); (e) H. Mansikkamäki, M. Nissinen, C.A. Schalley, and K. Rissanen: New. J. Chem. 27, 88 (2003); (f) H. Mansikkamäki, M. Nissinen, and K. Rissanen: Chem. Commun. 1902–1903 (2002)

  7. 7.

    (a) L.R. MacGillvray and J.L. Atwood: Nature 389, 469 (1997); (b) A. Shivanyuk and J. Rebek, Jr.: Chem. Commun. 2424 (2001); (c) A. Shivanyuk and J. Rebek, Jr.: Proc. Natl. Acad. Sci. USA 98, 7662 (2001); (d) L. Avram and Y. Cohen: Org. Lett. 4, 4365 (2002); (e) L. Avram and Y. Cohen: J. Am. Chem. Soc. 124, 15148 (2002); (f) A. Shivanyuk and J. Rebek, Jr.: J. Am. Chem. Soc. 124, 12074 (2002); (g) A. Schivanyuk and J. Rebek, Jr.: J. Am. Chem. Soc. 125, 3432 (2003); (h) T. Gerkensmeier, W. Iwanek, C. Agena, R.␣Fröhlich, S. Kotila, C. Näther, and J. Mattay: Eur. J. Org. Chem. 2257 (1999)

  8. 8.

    H. Mansikkamaki, M. Nissinen, and K. Rissanen: Angew. Chem. 116, 1263 (2004); Angew. Chem. Int. Ed. 43, 1243 (2004)

    Google Scholar 

  9. 9.

    Luostarinen M., Shivanyuk A., Rissanen K. (2001). Org. Lett. 26, 4141

    Article  Google Scholar 

  10. 10.

    Schivanyuk A., Schmidt C., Böhmer V., Paulus E., Lukin O., Vogt W. (1998). J. Am. Chem. Soc. 120, 4319

    Article  Google Scholar 

  11. 11.

    Schmidt C., Paulus E., Böhmer V., Vogt W. (2001) New J. Chem. 25, 374

    Article  CAS  Google Scholar 

  12. 12.

    White C., Burnett J. (2005) J. Chromatogr. A 1074, 175

    Article  CAS  Google Scholar 

  13. 13.

    (a) H.J. Schneider, D. Güttes, and U. Schneider: Angew. Chem. 98, 635 (1986); Angew. Chem. Int. Ed. 25, 647 (1986); (b) H.J. Schneider: Angew. Chem. 103, 1419 (1991); Angew. Chem. Int. Ed. 30, 1417 (1991); (c) J.L. Atwood and A. Szumna: J. Am. Chem. Soc. 124, 10646 (2002)

  14. 14.

    Mansikkamäki H., Nissinen M., Rissanen K. (2005) Cryst. Eng. Comm. 7, 519

    Google Scholar 

  15. 15.

    Mansikkamäki H., Schalley C.A., Nissinen M., Rissanen K. (2005) New J. Chem. 29, 116

    Article  Google Scholar 

  16. 16.

    For more recent reviews, see: (a) M. Przybylski and M.O. Glocker: Angew. Chem. 108, 878 (1996); Angew. Chem. Int. Ed. 35, 806 (1996); (b) J.S. Brodbelt: Int. J. Mass Spectrom. 200, 57 (2000); (c) C.A. Schalley: Int. J. Mass Spectrom. 194, 11 (2000); (d) C.B. Lebrilla: Acc. Chem. Res. 34, 653 (2001); (e) C.A. Schalley: Mass Spectrom. Rev. 20, 253 (2001)

  17. 17.

    Sawada M. Mass Spectrom. Rev. (1997) 16, 73

    Article  CAS  Google Scholar 

  18. 18.

    (a) C. Garcia, J. Guyot, G. Jeminet, E. Leize-Wagner, H.␣Nierengarten, and A. Van Dorsselaer: Tetrahedron Lett. 40, 4997 (1999); (b) H. Nierengarten, E. Leize, C. Garcia, G. Jeminet, and A. Van Dorsselaer: Analysis 28, 259 (2000)

  19. 19.

    (a) C.A. Schalley, R.K. Castellano, M.S. Brody, D.M. Rudkevich, G. Siuzdak, and J. Rebek, Jr.: J. Am. Chem Soc. 121, 4568 (1999); (b) M.S. Brody, D.M. Rudkevich, C.A. Schalley, and J. Rebek, Jr.: Angew. Chem. 111, 1738 (1999); Angew. Chem. Int. Ed. 38, 1640 (1999); (c) A. Lützen, A.R. Renslo, C.A. Schalley, B.M. O'Leary, and J. Rebek, Jr.: J. Am. Chem. Soc. 121, 7455 (1999); (d)␣B.M. O'Leary, T. Szabo, N. Svenstrup, C.A. Schalley, A.␣Lützen, J. Rebek, Jr.: J. Am. Chem. Soc. 123, 11519 (2001); (e) M.␣Makinen, P. Vainiotalo, and K. Rissanen: J. Am. Soc. Mass. Spectrom. 13, 851 (2002); (f) A. Tafi, B. Botta, M. Botta, G.D. Monache, A. Filippi, and M. Speranza: Chem. Eur. J. 10, 4126 (2004)

  20. 20.

    Sawada M., Takai Y., Hamada H., Hirayama S., Kaneda T., Tankaka T., Kamada K., Mizooku T., Takeuchi S., Ueno K., Hirose K., Tobe Y., Naemura K. (1995) J. Am. Chem. Soc. 117, 7726

    Article  CAS  Google Scholar 

  21. 21.

    Mehdizadeh A., Letzel M.C., Klaes M., Agena C., Mattay J. (2004) Eur. J. Mass Spectrom. 10, 649

    Article  CAS  Google Scholar 

  22. 22.

    Gacek M., Undheim K. (1973) Tetrahedron 29, 863

    Article  CAS  Google Scholar 

  23. 23.

    Spartan 04, Wavefunction Inc., 18401 Von Karman Ave, Irvine/CA, USA

  24. 24.

    The Program Chemical Kinetics Simulator 1.01 is available online from W. D. Hinsberg, F. A. Houle: https://www.almaden.ibm.com/st/computational_science/ck/msim/ (August 2004)

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (FCI) for financial support. C.A.S. is grateful for support with a Heisenberg fellowship from the DFG and a Dozentenstipendium from the FCI. N.K.B. wishes to thank the Graduate School of Bioorganic and Medicinal Chemistry for financial support. K.R. kindly acknowledges the funding from Academy of Finland (AF) and TEKES. The Deutscher Akademischer Austauschdienst (DAAD) and the AF are thanked for support for travel grants.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christoph A. Schalley or Kari Rissanen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beyeh, N.K., Fehér, D., Luostarinen, M. et al. Synthesis of Chiral Resorcinarene-based Hosts and a Mass Spectrometric Study of their Chemistry in Solution and the Gas Phase. J Incl Phenom Macrocycl Chem 56, 381–394 (2006). https://doi.org/10.1007/s10847-006-9121-2

Download citation

Keywords

  • Electrospray Mass Spectrometry
  • gas-phase chemistry
  • resorcinarenes
  • host–guest chemistry
  • chirality