Skip to main content
Log in

Equimolar Complex Formation of Urea or Thiourea with 2-alkoxy-benzamides: Structural Factors Required for the Equimolar Complex Formation

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Equimolar complex formation of either urea or thiourea with 2-ethoxy-benzamide (2-EB) and 2-methoxy-benzamide (2-MB) was investigated. Complex formation of urea and 2-MB was observed both by co-grinding method and by coprecipitation method. Molecular arrangement of the complex was determined by single crystal X-ray diffraction method as an equimolar complex. The crystal structure of the urea-2-MB complex, especially hydrogen bond networks, was quite different from that of thiourea-2-MB complex. In urea-2-MB equimolar complex, not only intermolecular hydrogen bond between urea and 2-MB but also hydrogen bond network between urea molecules played important roles to form the complex. When urea was co-ground with 2-EB, equimolar complex formation was not observed. Conformational change of guest molecules by the complexation was investigated in terms of intramolecular hydrogen bond length and the dihedral angles. Reduction of intramolecular hydrogen bond length of 2-MB and the conformational change to the flatter structure affected the equimolar complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jara J. Merchan N. Yutronic G Gonzalez (2000) ArticleTitleabcd J. Incl. Phenom. Macro 36 101 Occurrence Handle1:CAS:528:DC%2BD3cXhsFCqs70%3D

    CAS  Google Scholar 

  2. (a) : J. Mol. Graph. 13, 138 (1995). (b) K.D.M. Harris: J. Mol. Struct. 374, 241 (1996).

  3. K. Takemoto N Sonoda (1984) Inclusion Compounds of Urea, Thiourea and Selenourea J.L. Atwood J.E.D. Davies D.D. MacNicol (Eds) Inclusion Compounds NumberInSeriesVol. 2 Academic Press London

    Google Scholar 

  4. N. Yutronic V. Manriquez P. Jara O. Witke J. Merchán G González (2000) ArticleTitleabcd J. Chem. Soc. Perkin Trans 2 1757

    Google Scholar 

  5. M. Brandstätter A Burger (1997) ArticleTitleabcd J. Therm. Anal 50 559

    Google Scholar 

  6. C.C. Rusa C. Luca A.E. Tonelli M Rusa (2002) Polymer 43 3969 Occurrence Handle10.1016/S0032-3861(02)00225-2 Occurrence Handle1:CAS:528:DC%2BD38XjtlKltr4%3D

    Article  CAS  Google Scholar 

  7. K.D.M. Harris J.M.J Thomas (1990) Chem. Soc. Faraday Trans 86 1095 Occurrence Handle1:CAS:528:DyaK3cXkslOgur0%3D

    CAS  Google Scholar 

  8. G.H. Penner J.M. Polson C. Stuart G. Ferguson B.J Kaitner (1992) ArticleTitleabcd J. Phys. Chem 96 5121 Occurrence Handle10.1021/j100191a068 Occurrence Handle1:CAS:528:DyaK38XkvVajtLc%3D

    Article  CAS  Google Scholar 

  9. M.D. Hollingsworth B.D. Santarsiero H. Oumar-Mahamat C.J Nichols (1991) Chem. Mater 3 23 Occurrence Handle10.1021/cm00013a010 Occurrence Handle1:CAS:528:DyaK3MXnt1ClsQ%3D%3D

    Article  CAS  Google Scholar 

  10. V Videnova-Adrabińska (1996) J. Mol. Struct 374 199

    Google Scholar 

  11. Y. Hishikawa, K. Sada, and M. Miyata: J. Chem. Res. (S), 738 (1998).

  12. S. Lee B.M. Kariuki A.L. Richardson K.D.M Harris (2001) J. Am. Chem. Soc 123 12684 Occurrence Handle1:CAS:528:DC%2BD3MXotlKrsbw%3D

    CAS  Google Scholar 

  13. T. Oguchi K. Kazama E. Yonemochi S. Chutimaworapan W.S. Choi S. Limmatvapirat K Yamamoto (2000) Phys. Chem. Chem. Phys 2 2815 Occurrence Handle10.1039/b001644f Occurrence Handle1:CAS:528:DC%2BD3cXjslWks7s%3D

    Article  CAS  Google Scholar 

  14. K. Moribe R. Mochizuki Y. Tozuka T. Uchino T. Fukami T. Oguchi K Yamamoto (2004) J. Jpn. Soc. Pharm. Mach. & Eng 13 5

    Google Scholar 

  15. K. Moribe M. Tsuchiya Y. Tozuka K. Yamaguchi T. Oguchi K Yamamoto (2004) Chem. Pharm. Bull 52 524 Occurrence Handle10.1248/cpb.52.524 Occurrence Handle1:CAS:528:DC%2BD2cXksVylt7k%3D

    Article  CAS  Google Scholar 

  16. A. Altomare M.C. Burla M. Camalli G.L. Cascarano C. Giacovazzo A. Guagliardi A.G.G. Moliterni G. Polidori R Spanga (1999) J. Appl. Cryst 32 115 Occurrence Handle1:CAS:528:DyaK1MXhsFOrsbo%3D

    CAS  Google Scholar 

  17. P.T. Beurskens G. Admiraal G. Beurskens W.P. Bosman R. de Gelder R. Israel R. Israel J.M.M. Smits (1994) Technical Report of the Crystallography Laboratory University of Nijmegen The Netherlands

    Google Scholar 

  18. G. Smith K.E. Baldry K.A. Byriel C.H.L Kennard (1997) Aust. J. Chem 50 727–736 (1997) Occurrence Handle1:CAS:528:DyaK2sXmtV2ju70%3D

    CAS  Google Scholar 

  19. M.M. Elcombe J.C Taylor (1968) Acta Crystallogr. A 24 410–420 Occurrence Handle10.1107/S0567739468000835 Occurrence Handle1:CAS:528:DyaF1cXktlWisb0%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunikazu Moribe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moribe, K., Tsuchiya, M., Tozuka, Y. et al. Equimolar Complex Formation of Urea or Thiourea with 2-alkoxy-benzamides: Structural Factors Required for the Equimolar Complex Formation. J Incl Phenom Macrocycl Chem 54, 9–16 (2006). https://doi.org/10.1007/s10847-005-3183-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-3183-4

Keywords

Navigation