Skip to main content
Log in

Molecular Recognition Thermodynamics of Steroids by Novel Oligo(aminoethylamino)-β-cyclodextrins Bearing Anthryl: Enhanced Molecular Binding Ability by Co-inclusion Complexation

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Three β-cyclodextrin (β-CD) derivatives bearing anthracene group (24) were synthesized by the condensation of 9-anthracenecarboxylic acid with the corresponding oligo(aminoethylamino)-β-CDs in 33–36% yields and their original conformations and binding behavior with steroid molecules were investigated by using spectroscopic techniques and isothermal calorimeter. The combination of induced circular dichroism (ICD) and 2D NMR spectra reveals that the anthryl group attached to β-CD is itself included in cavity and the chain length of oligo(aminoethylamino) decides the orientation of the anthryl located in the cavity to some extent, directly affecting the binding ability with guest molecules. Calorimetric titration has been performed at buffer aqueous solution (pH 7.2) at 25 °C to give the binding constants (K_S) and thermodynamic parameters for 11 inclusion complexation of modified β-CDs 24 and representative steroids, i.e., cholate, deoxycholate, glycocholate, and taurocholate. Possessing the sidearm with appropriate length, 3 gives the highest stability constant of 22485± 15 M−1 for the complexation with deoxycholate molecule, which may be ascribed to the co-inclusion interactions between the host and guest. As compared with parent β-CD 1 upon complexation with steroids, hosts 24 with different chain lengths enhanced the binding ability and significant molecular discrimination, which are discussed comparatively and globally from the viewpoint of thermodynamics. Furthermore, we establish the correlation between the conformation of the resulting complexes and the thermodynamic parameters obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Breslow and S.D. Dong: Chem. Rev. 98, 1997–2012 (1998).

    Google Scholar 

  2. M.V. Rekharsky and Y. Inoue: Chem. Rev. 98, 1875–1917 (1998).

    Google Scholar 

  3. G. Wenz: Angew. Chem., Int. Ed. 33, 803–822 (1994).

    Google Scholar 

  4. A. R. Khan, P. Forgo, K.J. Stine, and V.T. D'Souza: Chem. Rev. 98, 1977–1996 (1998).

    Google Scholar 

  5. (a) A. Ueno, T. Kuwabara, A. Nakamura, and F. Toda: Nature 356, 136–137 (1992); (b)T. Kuwabara, A. Nakamura, A. Ueno, and F. Toda: J. Phys. Chem. 98, 6297–6303 (1994); (c) H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F. Toda, and A. Ueno: J. Am. Chem. Soc. 118, 10980–10988 (1996).

  6. (a) S.R. McAlpine and M.A. Garcia-Garibay: J. Am. Chem. Soc. 118, 2750–2751 (1996); (b) S.R. McAlpine and M.A. Garcia-Garibay: J. Am. Chem. Soc. 120, 4269–4275 (1998).

    Google Scholar 

  7. (a) Y. Liu, C.-C. You, T. Wada, and Y. Inoue: J. Org. Chem. 64, 3630–3634 (1999); (b) Y. Liu, B. Li, C.-C. You, T. Wada, and Y. Inoue: J. Org. Chem. 66, 225–232 (2001); (c) Y. Liu, C.-C. You and B. Li: Chem. Eur. J. 7, 1281–1288 (2001).

  8. J.M. Madrid, M. Villafruela, R. Serrano, and F. Mendicuti: J. Phys. Chem. B 103, 4847–4853 (1999).

    Google Scholar 

  9. Y. Liu, B.-H. Han, B. Li, Y.-M. Zhang, P. Zhao, and Y.-T. Chen: J. Org. Chem. 63, 1444–1454 (1998).

    Google Scholar 

  10. (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 4418–4435 (2000); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 10949–10955 (2000).

  11. X.-Y. Zhang, G. Gramlich, X.-J. Wang, and W.M. Nau: J. Am. Chem. Soc. 124, 254–263 (2002).

    Google Scholar 

  12. (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 813–826 (2002); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 12361–12371 (2002).

  13. Y. Liu, L. Li, X.-Y. Li, H.-Y. Zhang, T. Wada, and Y. Inoue: J. Org. Chem. 68, 3646–3657 (2003).

    Google Scholar 

  14. M. R. De Jong, J.F.J. Engbersen, J. Huskens, and D.N. Reinhoudt: Chem. Eur. J. 6, 4034–4040 (2000).

    Google Scholar 

  15. G. McSkimming, J.H.R. Tucker, H. Bouas-Laurent, and J.-P. Desvergne: Angew. Chem., Int. Ed. 39, 2167–2169 (2000).

    Google Scholar 

  16. A. Nakamura and Y. Inoue: J. Am. Chem. Soc. 125, 966–972 (2003).

    Google Scholar 

  17. (a) C.V. Kumar and E.H. Asuncion: Chem. Commun. 470–472 (1992); (b) C.V. Kumar and E.H. Asuncion: J. Am. Chem. Soc. 115, 8547–8553 (1993).

  18. T. Ikeda, K. Yoshida, and H.-J. Schneider: J. Am. Chem. Soc. 117, 1453–1454 (1995).

    Google Scholar 

  19. R.A. Agbaria, M.T. Butterfield, and I.M. Warner: J. Phys. Chem. 100, 17133–17137 (1996).

    Google Scholar 

  20. R.C. Petter, J.S. Salek, C.T. Sikorski, G. Kumaravel, and F.-T. Lin: J. Am. Chem. Soc. 112, 3860–3868 (1990).

    Google Scholar 

  21. B.L. May, S.D. Kean, C.J. Easton, and S.F. Lincoln: J. Chem. Soc., Perkin Trans.1 3157–3160 (1997).

    Google Scholar 

  22. K. Harata and H. Uedaira: Bull. Chem. Soc. Jpn. 48, 375–378 (1975).

    Google Scholar 

  23. K.A. Connors: Chem. Rev. 97, 1325–1357 (1997).

    Google Scholar 

  24. M. Kajtár, C. Horvath-Toro, E. Kuthi, and J. Szejtli: Acta Chim. Acad. Sci. Hung. 110, 327–355 (1982).

    Google Scholar 

  25. (a) Z.J. Tan, X.X. Zhu, and G.R. Brown: Langmuir 10, 1034–1039 (1994); (b) C.T. Yim, X.X. Zhu, and G.R. Brown: J. Phys. Chem. B 103, 597–602 (1999).

  26. F. Ollila, O.T. Pentikäinen, S. Forss, M.S. Johnson, and J.P. Slotte: Langmuir 17, 7107–7111 (2001).

    Google Scholar 

  27. A. Cooper, M.A. Nutley, and P. Camilleri: Anal. Chem. 70, 5024–5028 (1998).

    Google Scholar 

  28. A.P. Singh, P.R. Cabrer, E. Alvarez-Parrilla, F. Meijide, and J.V. Tato: J. Incl. Phenom. Mol. Recognit. Chem. 35, 335–348 (1999).

    Google Scholar 

  29. (a) Z. Yang and R. Breslow: Tetrahedron Lett. 38, 6171–6172 (1997); (b) J. Yang and R. Breslow: Angew. Chem., Int. Ed. 39, 2692–2694 (2000).

  30. E. Bednarek, W. Bocian, J. Poznañski, J. Sitkowski, N. Sadlej-Sosnowska, and L. Kozerski: J. Chem. Soc., Perkin Trans. 2 999–1004 (2002).

    Google Scholar 

  31. Y. Liu, Y. Song, H. Wang, H.-Y. Zhang, T. Wada, and Y. Inoue: J. Org. Chem. 68, 3687–3690 (2003).

    Google Scholar 

  32. P.R. Cabrer, E. Alvarez-Parrilla, F. Meijide, J.A. Seijas, E.R. NÚñez, and J.V. Tato: Langmuir 15, 5489–5495 (1999).

    Google Scholar 

  33. (a) Y. Inoue, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 10637–10644 (1993); (b) Y. Inoue, T. Hakushi, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 475–481 (1993); (c) M.V. Rekharsky, M.P. Mayhew, R.N. Goldberg, P.D. Ross, Y. Yamashoji, and Y. Inoue: J. Phys. Chem. B 101, 87–100 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhao, YL., Yang, EC. et al. Molecular Recognition Thermodynamics of Steroids by Novel Oligo(aminoethylamino)-β-cyclodextrins Bearing Anthryl: Enhanced Molecular Binding Ability by Co-inclusion Complexation. Journal of Inclusion Phenomena 50, 3–11 (2004). https://doi.org/10.1007/s10847-004-8826-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-004-8826-8

Navigation