Skip to main content
Log in

Cyclodextrin Solubilization of the Antibacterial Agents Triclosan and Triclocarban: Effect of Ionization and Polymers

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The natural β-cyclodextrin (βCD) and its complexes have limited solubility in aqueous solutions. This low aqueous solubility, as well as low aqueous solubility of the guest molecule (i.e. triclosan or triclocarban (TCC)), can result in low complexation efficiency (CE). The purpose of this study was to enhance the apparent intrinsic solubility (S 0) of the guest molecule and its βCD complexes through ionization and addition of auxiliary compounds such as polymers, amino acids and metal ions. Both triclosan (pK a 7.9) and TCC (pK a 12.7) are weak acids. Addition of ethanol to the complexation medium enhanced S 0 of both triclosan and TCC but at the same time ethanol lowered the stability constant (K c ) of their βCD complexes resulting in overall lowering of CE. Addition of small amount of water-soluble polymers enhanced the βCD solubilization of both guests, and addition lysine enhanced the solubilization of TCC. Ionization of triclosan resulted in significant enhancement of CE and enhanced triclosan release from tablets containing triclosan/βCD complex. The effect of ionization was not as pronounced in the case of TCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Surolia A. Surolia (2001) Nat. Med. 7 167 Occurrence Handle11175846

    PubMed  Google Scholar 

  2. V. Kjaerheim P. Barkvoll S.M. Waaler G. Rolla (1995) J. Clin. Periodontol. 22 423 Occurrence Handle7560219

    PubMed  Google Scholar 

  3. P. Chedgzoy G. Winckle C.M. Heard (2002) Int. J. Pharm. 235 229 Occurrence Handle11879757

    PubMed  Google Scholar 

  4. T. Loftsson M.E. Brewster (1996) J. Pharm. Sci. 85 1017 Occurrence Handle8897265

    PubMed  Google Scholar 

  5. T. Loftsson M. Masson (2001) Int. J. Pharm. 225 15 Occurrence Handle11489551

    PubMed  Google Scholar 

  6. T. Loftsson N. Leeves B. Bjornsdottir L. Duffy M. Masson (1999) J. Pharm. Sci. 88 1254 Occurrence Handle10585219

    PubMed  Google Scholar 

  7. T. Loftsson N. Leeves J.F. Sigurjónsdóttir H.H. Sigurðsson M. Másson (2001) Pharmazie 56 746 Occurrence Handle11594000

    PubMed  Google Scholar 

  8. H.H. Sigurdsson E. Knudsen T. Loftsson N. Leeves J.F. Sigurjonsdottir M. Másson (2002) J. Incl. Phenom. Macrocycl. Chem. 44 169

    Google Scholar 

  9. P.M. Ashall, B.M. Kiernan, N.R. Russell. In 1st World Meeting on Pharmaceutics, Biopharmaceutics, Pharmaceutical Technology, 9–11 May, APGI/APV, Budapest, (1995).

  10. T. Loftsson M. Másson J.F. Sigurjónsdóttir (1999) S.T.P. Pharma Sci. 9 237

    Google Scholar 

  11. T. Loftsson (2002) J. Incl. Phenom. Macrocycl. Chem. 44 63

    Google Scholar 

  12. V.J. Stella R.A. Rajewski (1997) Pharm. Res. 14 556 Occurrence Handle9165524

    PubMed  Google Scholar 

  13. K.A. Connors (1995) J. Pharm. Sci. 84 843 Occurrence Handle7562435

    PubMed  Google Scholar 

  14. K.A. Connors (1997) Chem. Rev. 97 1325 Occurrence Handle11851454

    PubMed  Google Scholar 

  15. V.M. Rao V.J. Stella (2003) J. Pharm. Sci. 92 927 Occurrence Handle12712411

    PubMed  Google Scholar 

  16. T. Loftsson H. Friðriksdóttir (1998) Int. J. Pharm. 163 115

    Google Scholar 

  17. T. Loftsson M. Másson (2004) J. Drug. Del. Sci. Tech. 14 35

    Google Scholar 

  18. C. Álvarez T. Hees ParticleVan G. Piel J.-F. Liégeois L. Delattre B. Evrard (2001) STP Pharma Sci. 11 439

    Google Scholar 

  19. T. Yamakawa S. Nishimura (2003) J. Control. Rel. 86 101

    Google Scholar 

  20. M. Valero B.I. Pérez-Revuelta L.J. Rodríguez (2003) Int. J. Pharm. 253 97 Occurrence Handle12593941

    PubMed  Google Scholar 

  21. I. Nandi M. Bateson M. Bari H.N. Joshi (2003) AAPS Pharm. Sci. Tech. 4 IssueID1 1

    Google Scholar 

  22. M. Valero C. Carrillo L.J. Rodríguez (2003) Int. J. Pharm. 265 131

    Google Scholar 

  23. M. Valero B. Esteban R. Peláez L.J. Rodríguez (2004) J. Incl. Phenom. Macrocycl. Chem. 48 157

    Google Scholar 

  24. A. Mele R. Mendichi A. Selva (1998) Carbohydr. Res. 310 261

    Google Scholar 

  25. A. Magnusdottir M. Másson T. Loftsson (2002) J. Incl. Phenom. Macrocycl. Chem. 44 213

    Google Scholar 

  26. T. Loftsson M. Másson M.E. Brewster (2004) J. Pharm. Sci. 93 1091 Occurrence Handle15067686

    PubMed  Google Scholar 

  27. G. González-Gaitano P. Rodríguez J.R. Isasi M. Fuentes G. Tardajos M. Sánchez: (2002) J. Incl. Phenom. Macrocycl. Chem. 44 101

    Google Scholar 

  28. T. Loftsson K. Matthíasson M. Másson (2003) Int. J. Pharm. 262 101 Occurrence Handle12927392

    PubMed  Google Scholar 

  29. P.A. Schwartz T.R. C J.E. Cooper (1977) J. Pharm. Sci. 66 994 Occurrence Handle18594

    PubMed  Google Scholar 

  30. T. Higuchi K.A. Connors (1965) Adv. Anal. Chem. Instrum. 4 117

    Google Scholar 

  31. F. Hirayama K. Uekama (1987) Methods of investigating and preparing inclusion compounds D. Duchêne (Eds) Cyclodextrins and their Industrial Uses Editions de Santé Paris 131–172

    Google Scholar 

  32. A.C. Moffat M.D. Osselton B. Widdop (Eds) (2004) Clarke’s Analysis of Drugs and Poisons Pharmaceutical Press London

    Google Scholar 

  33. G. McDonnell A.D. Russell (1999) Clin. Microbiol. Rev. 12 147 Occurrence Handle9880479

    PubMed  Google Scholar 

  34. S.E. Walsh J.-Y. Maillard A.D. Russell C.E. Catrenich D.L. Charbonneau G.R. Bartolo (2003) J. Appl. Microbiol. 94 240 Occurrence Handle12534815

    PubMed  Google Scholar 

  35. J. Szejtli (1988) Cyclodextrin Technology Kluwer Academic Publisher Dordrecht

    Google Scholar 

  36. P. Mura F. Maestrelli M. Cirri (2003) Int. J. Pharm. 260 293 Occurrence Handle12842348

    PubMed  Google Scholar 

  37. E. Redenti L. Szente J. Szejtli (2000) J. Pharm. Sci. 89 1 Occurrence Handle10664533

    PubMed  Google Scholar 

  38. E. Redenti L. Szente J. Szejtli (2001) J. Pharm. Sci. 90 979 Occurrence Handle11536201

    PubMed  Google Scholar 

  39. T. Loftsson H.H. Sigurðsson M. Másson N. Schipper (2004) Pharmazie 59 25 Occurrence Handle14964417

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsteinn Loftsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loftsson, T., Össurardóttir, Í.B., Thorsteinsson, T. et al. Cyclodextrin Solubilization of the Antibacterial Agents Triclosan and Triclocarban: Effect of Ionization and Polymers. J Incl Phenom Macrocycl Chem 52, 109–117 (2005). https://doi.org/10.1007/s10847-004-6048-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-004-6048-3

Keywords

Navigation