Skip to main content
Log in

Molecular Recognition Thermodynamics of Steroids by Novel Oligo(aminoethylamino)-β-cyclodextrins Bearing Anthryl: Enhanced Molecular Binding Ability by Co-inclusion Complexation

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Three β-cyclodextrin (β-CD) derivatives bearing anthracene group (24) were synthesized by the condensation of 9-anthracenecarboxylic acid with the corresponding oligo(aminoethylamino)-β-CDs in 33–36% yields and their original conformations and binding behavior with steroid molecules were investigated by using spectroscopic techniques and isothermal calorimeter. The combination of induced circular dichroism (ICD) and 2D NMR spectra reveals that the anthryl group attached to β-CD is itself included in cavity and the chain length of oligo(aminoethylamino) decides the orientation of the anthryl located in the cavity to some extent, directly affecting the binding ability with guest molecules. Calorimetric titration has been performed at buffer aqueous solution (pH 7.2) at 25 °C to give the binding constants (K_S) and thermodynamic parameters for 11 inclusion complexation of modified β-CDs 24 and representative steroids, i.e., cholate, deoxycholate, glycocholate, and taurocholate. Possessing the sidearm with appropriate length, 3 gives the highest stability constant of 22485± 15 M−1 for the complexation with deoxycholate molecule, which may be ascribed to the co-inclusion interactions between the host and guest. As compared with parent β-CD 1 upon complexation with steroids, hosts 24 with different chain lengths enhanced the binding ability and significant molecular discrimination, which are discussed comparatively and globally from the viewpoint of thermodynamics. Furthermore, we establish the correlation between the conformation of the resulting complexes and the thermodynamic parameters obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Breslow S.D. Dong (1998) Chem. Rev. 98 1997–2012

    Google Scholar 

  2. M.V. Rekharsky Y. Inoue (1998) Chem. Rev. 98 1875–1917

    Google Scholar 

  3. G. Wenz (1994) Angew. Chem. Int. Ed. 33 803–822

    Google Scholar 

  4. A.R. Khan P. Forgo K.J. Stine V.T. D’Souza (1998) Chem. Rev. 98 1977–1996

    Google Scholar 

  5. (a) A. Ueno, T. Kuwabara, A. Nakamura, and F. Toda: Nature 356, 136–137 (1992); (b) T. Kuwabara, A. Nakamura, A. Ueno, and F. Toda: J. Phys. Chem. 98, 6297–6303 (1994); (c) H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F.’Toda, and A. Ueno: J. Am. Chem. Soc. 118, 10980–10988 (1996).

  6. (a) S.R. McAlpine and M.A. Garcia-Garibay: J. Am. Chem. Soc. 118, 2750–2751 (1996); (b) S.R. McAlpine and M. A. Garcia-Garibay: J. Am. Chem. Soc. 120, 4269–4275 (1998).

    Google Scholar 

  7. (a) Y. Liu, C.-C. You, T. Wada, and Y. Inoue: J. Org. Chem. 64, 3630–3634 (1999); (b) Y. Liu, B. Li, C.-C. You, T. Wada, and Y.’Inoue: J. Org. Chem. 66, 225–232 (2001); (c) Y. Liu, C.-C. You and B. Li: Chem. Eur. J. 7, 1281–1288 (2001).

  8. J.M. Madrid M. Villafruela R. Serrano F. Mendicuti (1999) J. Phys. Chem. B 103 4847–4853

    Google Scholar 

  9. Y. Liu B.-H. Han B. Li Y.-M. Zhang P. Zhao Y.-T. Chen (1998) J. Org. Chem. 63 1444–1454

    Google Scholar 

  10. (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 4418–4435 (2000); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 10949–10955 (2000).

  11. X.-Y. Zhang G. Gramlich X.-J. Wang W.M. Nau (2002) J. Am. Chem. Soc. 124 254–263

    Google Scholar 

  12. (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 813–826 (2002); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 12361–12371 (2002).

  13. Y. Liu L. Li X.-Y. Li H.-Y. Zhang T. Wada Y. Inoue (2003) J. Org. Chem. 68 3646–3657

    Google Scholar 

  14. R.M. Jong ParticleDe J.F.J. Engbersen J. Huskens D.N. Reinhoudt (2000) Chem. Eur. J. 6 4034–4040

    Google Scholar 

  15. G. McSkimming J.H.R. Tucker H. Bouas-Laurent J.-P. Desvergne (2000) Angew. Chem., Int. Ed. 39 2167–2169

    Google Scholar 

  16. A. Nakamura Y. Inoue (2003) J. Am. Chem. Soc. 125 966–972

    Google Scholar 

  17. (a) C.V. Kumar and E.H. Asuncion: Chem. Commun. 470–472 (1992); (b) C.V. Kumar and E.H. Asuncion: J. Am. Chem. Soc. 115, 8547–8553 (1993).

  18. T. Ikeda K. Yoshida H.-J. Schneider (1995) J. Am. Chem. Soc. 117 1453–1454

    Google Scholar 

  19. R.A. Agbaria M.T. Butterfield I.M. Warner (1996) J. Phys. Chem. 100 17133–17137

    Google Scholar 

  20. R.C. Petter J.S. Salek C.T. Sikorski G. Kumaravel F.-T. Lin (1990) J. Am. Chem. Soc. 112 3860–3868

    Google Scholar 

  21. B.L. May S.D. Kean C.J. Easton S.F. Lincoln (1997) J. Chem. Soc., Perkin. Trans. 1 3157–3160

    Google Scholar 

  22. K. Harata H. Uedaira (1975) Bull. Chem. Soc. Jpn. 48 375–378

    Google Scholar 

  23. K.A. Connors (1997) Chem. Rev. 97 1325–1357

    Google Scholar 

  24. M. Kajtär C. Horvath-Toro E. Kuthi J. Szejtli (1982) Acta Chim Acad Sci Hung 110 327–355

    Google Scholar 

  25. (a) Z.J. Tan, X.X. Zhu, and G.R. Brown: Langmuir 10, 1034–1039 (1994); (b) C.T. Yim, X.X. Zhu, and G.R. Brown: J. Phys. Chem. B 103, 597–602 (1999).

  26. F. Ollila O.T. Pentikäinen S. Forss M.S. Johnson J.P. Slotte (2001) Langmuir. 17 7107–7111

    Google Scholar 

  27. A. Cooper M.A. Nutley P. Camilleri (1998) Anal. Chem. 70 5024–5028

    Google Scholar 

  28. A.P. Singh P.R. Cabrer E. Alvarez-Parrilla F. Meijide J.V. Tato (1999) J. Incl. Phenom. Mol. Recognit. Chem. 35 335–348

    Google Scholar 

  29. (a) Z. Yang and R. Breslow: Tetrahedron Lett. 38, 6171–6172 (1997); (b) J. Yang and R. Breslow: Angew. Chem., Int. Ed. 39, 2692–2694 (2000).

  30. E. Bednarek W. Bocian J. Poznanski J. Sitkowski N. Sadlej-Sosnowska L. Kozerski (2002) J. Chem. Soc., Perkin. Trans. 2 999–1004

    Google Scholar 

  31. Y. Liu Y. Song H. Wang H.-Y. Zhang T. Wada Y. Inoue (2003) J. Org. Chem. 68 3687–3690

    Google Scholar 

  32. P.R. Cabrer E. Alvarez-Parrilla F. Meijide J.A. Seijas E.R. Nanez J.V. Tato (1999) Langmuir. 15 5489–5495

    Google Scholar 

  33. (a) Y. Inoue, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 10637–10644 (1993); (b) Y. Inoue, T. Hakushi, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 475–481 (1993); (c) M.V. Rekharsky, M.P. Mayhew, R.N. Goldberg, P.D. Ross, Y. Yamashoji, and Y. Inoue: J. Phys. Chem. B 101, 87–100 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhao, YL., Yang, EC. et al. Molecular Recognition Thermodynamics of Steroids by Novel Oligo(aminoethylamino)-β-cyclodextrins Bearing Anthryl: Enhanced Molecular Binding Ability by Co-inclusion Complexation. J Incl Phenom Macrocycl Chem 50, 3–11 (2004). https://doi.org/10.1007/s10847-003-8826-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-003-8826-8

Keywords

Navigation