Skip to main content

Evolving Real-time Stereo Odometry for AUV Navigation in Challenging Marine Environments


Autonomous Underwater Vehicle (AUV) navigation and control modules often integrate as much sensory data as possible to increase accuracy in estimating pose and velocity. Visual odometry can be a good complement for robot localization when it navigates in challenging underwater scenarios, such as those colonized with seagrass or algae. Thanks to the wide variety of cameras available on the market, their increased performance and moderated cost; this type of sensor now can be used in marine robots. The work proposed in this paper increases the robustness of contemporary feature-based visual odometers for application in such environments by evolving a state-of-the-art approach; ensuring the tracking of visual keypoints that are geometrically and photometrically invariant, highly distinguishable, and exhibit strong repeatability. Experimental results, obtained from visual datasets captured by a stereoscopic camera installed on an AUV while performing different missions in large areas of the Balearic Islands with special ecological interest, show the improvement of this proposal with respect to other approaches already available and its feasibility to be used online.

This is a preview of subscription content, access via your institution.

Similar content being viewed by others

Code or Data Availability

The source code is available in the GitHub repository:


  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Association for Computing Machinery, USA (2005)

    MATH  Google Scholar 

  2. Moravec, H.P.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD thesis, Stanford University, Stanford, CA, USA (1980). AAI8024717

  3. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 652–659. (2004)

  4. Dabove, P., Pietra, V.D., Piras, M.: Monocular Visual Odometry with Unmanned Underwater Vehicle Using Low Cost Sensors. In: 2020 IEEE/ION Position, Location and Navigation Symposium, pp. 810–816. (2020)

  5. Scaramuzza, D., Fraundorfer, F.: Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 18, 80–92 (2011)

    Article  Google Scholar 

  6. Yang, N., Wang, R., Cremers, D.: Feature-based or direct: An evaluation of monocular visual odometry. arXiv:1705.04300 (2017)

  7. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense Tracking and Mapping in Real-Time. In: 2011 International Conference on Computer Vision (ICCV), pp. 2320–2327. (2011)

  8. Engel, J.J., Schöps, T., Cremers, D.: LSD-SLAM: Large-Scale Direct Monocular SLAM. In: European Conference on Computer Vision (ECCV) (2014)

  9. Engel, J., Koltun, V., Cremers, D.: Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  10. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot. 33(2), 249–265 (2017)

    Article  Google Scholar 

  11. Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: a Survey. Found. Trends. Comput. Graph. Vis. 3(3), 177–280 (2008)

    Article  Google Scholar 

  12. Tareen, S.A.K., Saleem, Z.: A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–10. (2018)

  13. Ci, W., Xu, T., Xu, T., Wu, X., Lu, S.: Fast and Low-Drift Visual Odometry With Improved RANSAC-Based Outlier Removal Scheme for Intelligent Vehicles. IEEE Access 10, 60128–60140 (2022)

    Article  Google Scholar 

  14. Company-Corcoles, J.P., Garcia-Fidalgo, E., Ortiz, A.: MSC-VO: Exploiting Manhattan and Structural Constraints for Visual Odometry. IEEE Robot. Auto. Lett. 7(2), 2803–2810 (2022)

    Article  Google Scholar 

  15. Kostavelis, I., Boukas, E., Nalpantidis, L., Gasteratos, A.: Stereo-Based Visual Odometry for Autonomous Robot Navigation. Int. J. Adv. Robot. Syst. 13(1), 21 (2016)

    Article  Google Scholar 

  16. Zhang, Y., Yang, J., Zhang, H., Hwang, J.-N.: Bundle Adjustment for Monocular Visual Odometry Based on Detected Traffic Sign Features. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4350–4354. (2019)

  17. Miiller, M.G., Steidle, F., Schuster, M.J., Lutz, P., Maier, M., Stoneman, S., Tomic, T., Stürzl, W.: Robust Visual-Inertial State Estimation with Multiple Odometries and Efficient Mapping on an MAV with Ultra- Wide FOV Stereo Vision. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3701–3708. (2018)

  18. Zhong, S., Chirarattananon, P.: An Efficient Iterated EKF-Based Direct Visual-Inertial Odometry for MAVs Using a Single Plane Primitive. IEEE Robot. Auto. Lett. 6(2), 486–493 (2021)

    Article  Google Scholar 

  19. Hu, K., Weng, C., Zhang, Y., Jin, J., Xia, Q.: An Overview of Underwater Vision Enhancement: From Traditional Methods to Recent Deep Learning. J. Marine Sci. Eng. 10(2) (2022)

  20. Wirth, S., Negre-Carrasco, P.L., Oliver, G.: Visual Odometry for Autonomous Underwater Vehicles. In: 2013 MTS/IEEE OCEANS - Bergen, pp. 1–6. (2013)

  21. Negre-Carrasco, P.L., Bonin-Font, F., Oliver, G.: Global Image Signature for Visual Loop-Closure Detection. Auton. Robot. 40(8), 1403–1417 (2016)

    Article  Google Scholar 

  22. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 486–492. (2010)

  23. Sukvichai, K., Wongsuwan, K., Kaewnark, N., Wisanuvej, P.: Implementation of Visual Odometry Estimation for Underwater Robot on ROS by Using RaspberryPi 2. In: 2016 International Conference on Electronics, Information, and Communications (ICEIC), pp. 1–4. (2016)

  24. Zacchini, L., Bucci, A., Franchi, M., Costanzi, R., Ridolfi, A.: Mono Visual Odometry for Autonomous Underwater Vehicles Navigation. In: OCEANS 2019 - Marseille, pp. 1–5. (2019)

  25. Xu, Z., Haroutunian, M., Murphy, A.J., Neasham, J., Norman, R.: An Integrated Visual Odometry System for Underwater Vehicles. IEEE J. Ocean. Eng. 46(3), 848–863 (2021)

    Article  Google Scholar 

  26. Bellavia, F., Fanfani, M., Colombo, C.: Selective Visual Odometry for Accurate AUV Localization. Auton. Robot. 41 (2017)

  27. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3d Reconstruction in Real-Time. In: 2011 IEEE Intelligent Vehicles Symposium, pp. 963–968. (2011)

  28. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Kitti Vision Benchmark Suite. (2022)

  29. University of Tsukuba: New Tsukuba Stereo Dataset. (2022)

  30. Nawaf, M., Merad, D., Royer, J.P., Boï, J.M., Saccone, M., Ellefi, M.B., Drap, P.: Fast Visual Odometry for a Low-Cost Underwater Embedded Stereo System. Sensors 18, 2313 (2018)

  31. Agisoft: Agisoft PhotoScan. (2022)

  32. Miao, R., Qian, J., Song, Y., Ying, R., Liu, P.: UniVIO: Unified Direct and Feature-Based Underwater Stereo Visual-Inertial Odometry. IEEE Trans. Instrum. Meas. 71, 1–14 (2022)

    Google Scholar 

  33. Rahman, S., Li, A.Q., Rekleitis, I.: SVIn2: An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.1861–1868. (2019)

  34. Vargas, E., Scona, R., Willners, J.S., Luczynski, T., Cao, Y., Wang, S., Petillot, Y.R.: Robust Underwater Visual SLAM Fusing Acoustic Sensing. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2140–2146. (2021)

  35. Ferrera, M., Moras, J., Trouvé-Peloux, P., Creuze, V.: Real-time monocular visual odometry for turbid and dynamic underwater environments. Sensors (Basel, Switzerland) 19 (2019)

  36. SRV Group: DETECPOS: DEvelopment of new TEChnologies for the automatic and periodic assessment of changes in POSidonia meadows due to anthropogenic causes. (2022)

  37. SRV Group: COOPERAMOS - COOPErative Resident robots for Autonomous ManipulatiOn Subsea. subproject-vi-smart/ (2022)

  38. Carreras, M., Hernández, J.D., Vidal, E., Palomeras, N., Ribas, D., Ridao, P.: Sparus II AUV-A Hovering Vehicle for Seabed Inspection. IEEE J. Ocean. Eng. 43(2), 344–355 (2018)

    Article  Google Scholar 

  39. Stanford Artificial Intelligence Laboratory et al.: Robotic operating system (2022)

  40. Guerrero-Font, E., Bonin-Font, F., Negre-Carrasco, P.L., Massot, M., Oliver, G.: USBL Integration and Assessment in a Multisensor Navigation Approach for AUVs. IFAC-PapersOnLine 50(1), 7905–7910 (2017). 20th IFAC World Congress

  41. Mur-Artal, R., Tardos, J.: ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2016)

    Article  Google Scholar 

  42. Neubeck, A., Van Gool, L.: Efficient Non-Maximum Suppression. In: 18th International Conference on Pattern Recognition, vol. 3, pp. 850-855. (2006)

  43. Negre-Carrasco, P.L., Oliver, G.: Visual Odometry Parameters Optimization for Autonomous Underwater Vehicles. Instrumentation ViewPoint (15) (2013)

  44. Bonin-Font, F., Coll, C., Oliver, G.: Hacia la Navegación Visual de un Vehículo Autónomo Submarino en Áreas con Posidonia Oceanica. Revista Iberoamericana de Automática e Informática Industrial 15(1), 24–35 (2017)

    Article  Google Scholar 

  45. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  46. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  47. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary Robust Invariant Scalable Keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555. (2011)

  48. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517. (2012)

  49. Fraundorfer, F., Scaramuzza, D.: Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012)

  50. Forero, M.G., Mambuscay, C.L., Monroy, M.F., Miranda, S.L., Méndez, D., Valencia, M.O., Gomez Selvaraj, M.: Comparative Analysis of Detectors and Feature Descriptors for Multispectral Image Matching in Rice Crops. Plants 10(9) (2021)

  51. Huang, K., Li, J., Liu, Y., Chang, L., Zhou, J.: A Survey on Feature Point Extraction Techniques. In: 2021 18th International SoC Design Conference, pp. 201–202. (2021)

  52. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, USA (2000)

    MATH  Google Scholar 

  53. Muja, M., Lowe, D.: Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. VISAPP 2009 - Proceedings of the 4th International Conference on Computer Vision Theory and Applications 1, 331-340 (2009)

  54. Massot, M., Wirth, S., Negre-Carrasco, P.L., Nordfeldt-Fiol, B.M.: ROS Stack Containing a Wrapper for LIBVISO2. (2022)

  55. ROS: Odometry ROS messages, package Navigation Messages. (2022)

  56. ROS: Bagfiles. (2022)

  57. Martorell-Torres, A., Guerrero-Font, E., Guerrero-Sastre, J., Oliver- Codina, G.: Xiroi II, an Evolved ASV Platform for Marine Multirobot Operations. Sensors 23(1) (2023)

Download references


Not applicable.


Grant PID2020-115332RB-C33 is funded by Ministerio de Ciencia e Innovación, identified as MCIN/AEI/10.13039/501100011033 and by "ERDF (European Regional Development Fund) A way of making Europe", and by the Comunitat Autonoma de les Illes Balears through the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law (PRD2018/34).

Author information

Authors and Affiliations



Bo Miquel Nordfeldt-Fiol contributed to the study conception and design of the work to be done, implemented the algorithms, collected the datasets, designed and did the experiments, analyze the experimental data and to write the manuscript. Francisco Bonin-Font contributed to the study conception and design of the work to be done, to design of the experiments and to write the manuscript. Gabriel Oliver Codina contributed to get and manage the funding, analyze the experimental data and to write and review the manuscript.

Corresponding author

Correspondence to Bo Miquel Nordfeldt-Fiol.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare no conflict of interest.

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordfeldt-Fiol, B.M., Bonin-Font, F. & Oliver, G. Evolving Real-time Stereo Odometry for AUV Navigation in Challenging Marine Environments. J Intell Robot Syst 108, 83 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: