Skip to main content
Log in

L1 Adaptive Structure-Based Nonlinear Dynamic Inversion Control for Aircraft with Center of Gravity Variations

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Due to the reliance on model knowledge and the lack of compensation mechanism, Nonlinear Dynamic Inversion (NDI) control does not provide the essential robustness in the face of disturbances such as the Center of Gravity (CG) sudden change. To overcome this deficiency, a novel adaptive NDI control approach based on the L1 adaptive structure, called L1 Adaptive Nonlinear Dynamic Inversion (L1-ANDI), is presented, which can guarantee the desired dynamic performance while overcoming the influence of disturbances and uncertainties. In particular, the introduction of a low-pass filter makes the L1-ANDI control realize the decoupling of fast adaptation and robustness. Furthermore, the effect of CG variations on the aircraft is analyzed from the aerodynamic perspective, and the L1-ANDI-based flight controller is designed to eliminate the influence of the CG variations. A series of simulation results demonstrate that the designed flight controller can achieve satisfactory performance and is robust to the disturbance of CG sudden variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Code availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Smith, P.R., Patel, Y.: Translational motion control of VSTOL aircraft using nonlinear dynamic inversion, in: 20th Atmos. Flight Mech. Conf., 238–252 (1995). https://doi.org/10.2514/6.1995-3452

  2. Lim, S., Kim, B.S.: Aircraft CAS design with input saturation using dynamic model inversion. Int. J. Control. Autom. Syst. 1, 315–320 (2003)

    Google Scholar 

  3. Bin Hsiao, F., Duan, L.L., Lu, W.C.: Evaluation of nonlinear dynamic inversion technique applied to flight-path control. J. Chinese Soc. Mech. Eng. Trans. Chinese Inst. Eng. Ser. C/Chung-Kuo Chi Hsueh K. Ch’eng Hsuebo Pao. 29, 171–177 (2008). https://doi.org/10.29979/JCSME.200804.0009

    Article  Google Scholar 

  4. Snell, S.A., Enns, D.F., Garrard, W.L.: Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control. Dyn. 15, 976–984 (1992). https://doi.org/10.2514/3.20932

    Article  Google Scholar 

  5. Wu, G., Meng, X., Wang, F.: Improved nonlinear dynamic inversion control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 78, 734–743 (2018). https://doi.org/10.1016/j.ast.2018.04.036

    Article  Google Scholar 

  6. Sieberling, S., Chu, Q.P., Mulder, J.A.: Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J. Guid. Control. Dyn. 33, 1732–1742 (2010). https://doi.org/10.2514/1.49978

    Article  Google Scholar 

  7. Wang, X., Van Kampen, E., Chu, Q.P., De Breuker, R.: Flexible aircraft gust load alleviation with incremental nonlinear dynamic inversion. J. Guid. Control. Dyn. 42, 1519–1536 (2019). https://doi.org/10.2514/1.G003980

    Article  Google Scholar 

  8. Mehedi, I.M., Shah, M.H.M.: Position Control of rotary flexible joint system using Adaptive dynamic inversion. IEEJ Trans. Electr. Electron. Eng. 17, 96–102 (2022). https://doi.org/10.1002/tee.23491

    Article  Google Scholar 

  9. He, Q., Tan, Y., Liu, X., Jia, Q., Liu, J.: Reconfigurable nonlinear dynamic inversion for attitude Control of a structurally damaged aircraft. IEEE Access. 8, 199931–199943 (2020). https://doi.org/10.1109/ACCESS.2020.3035436

    Article  Google Scholar 

  10. Wang, L., Zhang, Z., Zhu, Q., Wen, Z.: Longitudinal automatic carrier-landing control law rejecting disturbances and coupling based on adaptive dynamic inversion. Bull. Polish Acad. Sci. Tech. Sci. 69 (2021). https://doi.org/10.24425/bpasts.2020.136217

  11. Joshi, G., Padhi, R.: Robust satellite formation flying using Dynamic Inversion with modified state observer. in: Proc. IEEE Int. Conf. Control Appl., 568–573 (2013). https://doi.org/10.1109/CCA.2013.6662810

  12. Cao, C., Hovakimyan, N.: Design and analysis of a novel ℒ1 adaptive controller, part I: Control signal and asymptotic stability, in. Proc. Am. Control Conf., 3397–3402 (2006). https://doi.org/10.1109/acc.2006.1657243

  13. Yu, L., Xiaoxiong, L., Hui, Z., Yueheng, Q.: Design of control law for Carrier-based Aircraft based on Ll adaptive control, in: 2018 IEEE CSAA Guid. Navig. Control Conf. CGNCC. 2018, 2018. https://doi.org/10.1109/GNCC42960.2018.9019179

  14. Xiaoxiong, L., Li, Y., Yuan, M.Q., Jian, S.: Gust alleviation controller for elastic aircraft based on L1 adaptive control, in: Proc. - 2017 Chinese Autom. Congr. CAC. 2017(2017), 5382–5385. https://doi.org/10.1109/CAC.2017.8243737

  15. Zhou, Y., Liu, H., Guo, H., Duan, X.: L1 adaptive dynamic inversion attitude control for unmanned aerial vehicle with actuator failures. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233, 4129–4140 (2019). https://doi.org/10.1177/0954410018814602

    Article  Google Scholar 

  16. Campbell, S.F., Kaneshige, J.T.: A nonlinear dynamic inversion L1 adaptive controller for a Generic Transport Model. in: Proc. 2010 Am. Control Conf. ACC. 2010, 862–867 (2010). https://doi.org/10.1109/acc.2010.5530704

    Article  Google Scholar 

  17. Zuo, Z., Ru, P.: Augmented script L1 adaptive tracking control of quad-rotor unmanned aircrafts. IEEE Trans. Aerosp. Electron. Syst. 50, 3090–3101 (2014). https://doi.org/10.1109/TAES.2014.120705

    Article  Google Scholar 

  18. Song, H.T., Zhang, T., Zhang, G.L.: L1 adaptive state feedback controller for three-dimensional integrated guidance and control of interceptor. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 228, 1693–1701 (2014). https://doi.org/10.1177/0954410013506332

    Article  Google Scholar 

  19. Chang, J., Zhu, J., Liu, R., Dong, W.: Lateral Control for ultra-low altitude airdrop based on the L1 Adaptive Control augmentation. Int. J. Control. Autom. Syst. 16, 461–477 (2018). https://doi.org/10.1007/s12555-017-0014-5

    Article  Google Scholar 

  20. Luo, J., Cao, C.: Consensus in multi-agent systems with nonlinear uncertainties under a fixed undirected graph. Int. J. Control. Autom. Syst. 12, 231–240 (2014). https://doi.org/10.1007/s12555-013-0220-8

    Article  Google Scholar 

  21. Geiser, M., Xargay, E., Hovakimyan, N., Bierling, T., Holzapfel, F.: L1 adaptive augmented dynamic inversion controller for a high agility UAV. in: AIAA Guid. Navig. Control Conf., 2011 (2011). https://doi.org/10.2514/6.2011-6457

  22. Van Heusden, K., Talebian, K., Dumont, G.A.: Analysis of L 1 adaptive state feedback control. Why does it approximate an implementable LTI controller? Eur. J. Control. 23, 1–7 (2015). https://doi.org/10.1016/j.ejcon.2015.02.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Maalouf, D., Chemori, A., Creuze, V.: L1 Adaptive depth and pitch control of an underwater vehicle with real-time experiments. Ocean Eng. 98, 66–77 (2015). https://doi.org/10.1016/j.oceaneng.2015.02.002

    Article  Google Scholar 

  24. Lee, H., Snyder, S., Hovakimyan, N.: L1 Adaptive output feedback augmentation for missile systems. IEEE Trans. Aerosp. Electron. Syst. 54, 680–692 (2018). https://doi.org/10.1109/TAES.2017.2764218

    Article  Google Scholar 

  25. Leman, T., Xargay, E., Dullerud, G., Hovakimyan, N., Wendel, T.: ℒ1 adaptive control augmentation system for the X-48B aircraft. AIAA Guid. Navig. Control Conf. Exhib. (2009). https://doi.org/10.2514/6.2009-5619

  26. Hameduddin, I., Bajodah, A.H.: Nonlinear generalised dynamic inversion for aircraft manoeuvring control. Int. J. Control. 85, 437–450 (2012). https://doi.org/10.1080/00207179.2012.656143

    Article  MathSciNet  MATH  Google Scholar 

  27. Ansari, U., Bajodah, A.H.: Hybrid direct-indirect Adaptive generalized dynamic inversion based attitude Control of autonomous underwater vehicles, in: 2018 IEEE Conf. Control Technol. Appl. CCTA. 2018, 101–106 (2018). https://doi.org/10.1109/CCTA.2018.8511496

    Article  Google Scholar 

  28. Hovakimyan, N., Cao, C.: L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. [Bookshelf], IEEE Control. Syst. 31(2011), 112–114 (2010). https://doi.org/10.1109/mcs.2011.941837

    Article  Google Scholar 

  29. Praly, L.: Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans. Automat. Contr. 37, 729–740 (1992). https://doi.org/10.1109/9.256328

    Article  MathSciNet  MATH  Google Scholar 

  30. Bacon, B.J., Gregory, I.M.: General equations of motion for a damaged asymmetric aircraft. in: AIAA Atmos. Flight Mech. Conf., 63–75 (2007). https://doi.org/10.2514/6.2007-6306

  31. Hovakimyan, N., Lavretsky, E., Cao, C.: Adaptive dynamic inversion via time-scale separation. IEEE Trans. Neural Netw. 19, 1702–1711 (2008). https://doi.org/10.1109/TNN.2008.2001221

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology for supporting this research.

Funding

This research work is funded by the National Natural Science Foundation of China (No. 62073266) and the Aeronautical Science Foundation of China (No. 201905053003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Ethics declarations

Conflicts of interest interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors agreed to publish this manuscript in the “Journal of Intelligent & Robotic Systems”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, X., He, Q. et al. L1 Adaptive Structure-Based Nonlinear Dynamic Inversion Control for Aircraft with Center of Gravity Variations. J Intell Robot Syst 106, 4 (2022). https://doi.org/10.1007/s10846-022-01691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01691-4

Keywords

Navigation