Skip to main content

Advertisement

Log in

Towards Hybrid Gait Obstacle Avoidance for a Six Wheel-Legged Robot with Payload Transportation

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper investigates a novel hybrid gait obstacle-avoidance control strategy based on a perception system for the six wheel-legged robot (BIT-6NAZA) in uneven terrain. This robot has stronger payload transportation performance benefited from the flexibility of the 6-degree of freedom Stewart platform. It can guarantee the attitude level stability when passing through different shapes of obstacles. Firstly, the motion state matrix and gait unit of the BIT-6NAZA robot are considered. Moreover, the current local terrain is identified by the visual perception system. Then the wheel-legged hybrid gait types and parameters are selected according to the terrain detection. The gait topology matrix and gait planning matrix are generated for each leg controller to realize the wheel-legged hybrid obstacle-avoidance. In addition, a feedback controller combined with the posture sensor and foot-end force sensor is utilized to maintain the robot body. Finally, some demonstrations using the developed BIT-6NAZA robot are carried out. The performance illustrates the effectiveness and feasibility of the hybrid gait obstacle-avoidance control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjelonic, M., Bellicoso, C.D., de Viragh, Y., Sako, D., Tresoldi, F.D., Jenelten, F., Hutter, M.: Keep rollin’—whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robot. Autom. Lett. 4(2), 2116–2123 (2019)

    Article  Google Scholar 

  2. Chen, J., Liang, Z., Zhu, Y., Zhao, J.: Improving kinematic flexibility and walking performance of a six-legged robot by rationally designing leg morphology. J. Bionic Eng. 16(4), 608–620 (2019)

    Article  Google Scholar 

  3. Chen, S., Huang, K., Chen, W., Shen, S., Li, C., Lin, P.: Quattroped: A leg–wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2014)

    Article  Google Scholar 

  4. Chen, Z., Wang, S., Wang, J., Xu, K., Lei, T., Zhang, H., Wang, X., Liu, D.: Control strategy of stable walking for a hexapod wheel - legged robot. ISA Transactions (2020)

  5. Cui, Y., Matsubara, T., Sugimoto, K.: Pneumatic artificial muscle-driven robot control using local update reinforcement learning. Adv. Robot. 31(8), 397–412 (2017)

    Article  Google Scholar 

  6. de Viragh, Y., Bjelonic, M., Bellicoso, C.D., Jenelten, F., Hutter, M.: Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robot. Autom. Lett. 4(2), 1633–1640 (2019)

    Article  Google Scholar 

  7. Grand, C., Benamar, F., Plumet, F.: Motion kinematics analysis of wheeled-legged rover over 3d surface with posture adaptation. Mech. Mach. Theory 45(3), 477–495 (2010)

    Article  Google Scholar 

  8. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  9. He, W., Sun, Y., Yan, Z., Yang, C., Li, Z., Kaynak, O.: Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1735–1746 (2020)

    Article  MathSciNet  Google Scholar 

  10. Hong, D.K., Hwang, W., Lee, J.Y., Woo, B.C.: Design, analysis, and experimental validation of a permanent magnet synchronous motor for articulated robot applications. IEEE Trans. Magnet. PP(3), 1–4 (2017)

    Article  Google Scholar 

  11. Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C.: Anymal - toward legged robots for harsh environments. Advanced Robotics (2017)

  12. Klamt, T., Rodriguez, D., Baccelliere, L., Chen, X., Chiaradia, D., Cichon, T., Gabardi, M., Guria, P., Holmquist, K., Kamedula, M., et al.: Flexible disaster response of tomorrow: Final presentation and evaluation of the centauro system. IEEE Robot. Autom. Mag. 26(4), 59–72 (2019)

    Article  Google Scholar 

  13. Klamt, T., Schwarz, M., Lenz, C., Baccelliere, L., Buongiorno, D., Cichon, T., DiGuardo, A., Droeschel, D., Gabardi, M., Kamedula, M., et al.: Remote mobile manipulation with the centauro robot: Full-body telepresence and autonomous operator assistance. J. Field Robot. 37(5), 889–919 (2019)

    Article  Google Scholar 

  14. Li, J., Shi, X., Li, J., Zhang, X., Wang, J.: Random curiosity-driven exploration in deep reinforcement learning. Neurocomputing 418, 139–147 (2020)

    Article  Google Scholar 

  15. Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., Su, H.: Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 410, 342–353 (2020)

    Article  Google Scholar 

  16. Li, J., Wang, J., Wang, S., Peng, H., Wang, B., Qi, W., Zhang, L., Su, H.: Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assem. Autom. 40(5), 675–687 (2020)

    Article  Google Scholar 

  17. Li, J., Zhang, X., Li, J., Liu, Y., Wang, J.: Building and optimization of 3d semantic map based on lidar and camera fusion. Neurocomputing 409, 394–407 (2020)

    Article  Google Scholar 

  18. Li, Z., Ge, Q., Ye, W., Yuan, P.: Dynamic balance optimization and control of quadruped robot systems with flexible joints. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1338–1351 (2016)

    Article  Google Scholar 

  19. Li, Z., Li, J., Zhao, S., Yuan, Y., Kang, Y., Chen, C.L.P.: Adaptive neural control of a kinematically redundant exoskeleton robot using brain–machine interfaces. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3558–3571 (2019)

    Article  MathSciNet  Google Scholar 

  20. Li, Z., Yuan, Y., Ke, F., He, W., Su, C.: Robust vision-based tube model predictive control of multiple mobile robots for leader–follower formation. IEEE Trans. Ind. Electron. 67(4), 3096–3106 (2020)

    Article  Google Scholar 

  21. Liu, D., Liu, H., Lewis, F.L., Valavanis, K.P.: Robust time-varying formation control for tail-sitters in flight mode transitions. IEEE Transactions on Systems Man, and Cybernetics: Systems 1–10. https://doi.org/10.1109/TSMC.2019.2931482 (2019)

  22. Nakajima, S.: Rt-mover: a rough terrain mobile robot with a simple leg-wheel hybrid mechanism. Int. J. Robot. Res. 30(13), 1609–1626 (2011)

    Article  Google Scholar 

  23. Niu, J., Wang, H., Shi, H., Pop, N., Li, D., Li, S., Wu, S.: Study on structural modeling and kinematics analysis of a novel wheel-legged rescue robot. Int. J Adv. Robot. Syst. 15(1), 172988141775,275 (2018)

    Article  Google Scholar 

  24. Peng, H., Wang, J., Shen, W., Shi, D.: Cooperative attitude control for a wheel-legged robot. Peer Peer Netw. Appl. 12(6), 1741–1752 (2019)

    Article  Google Scholar 

  25. Peng, H., Wang, J., Wang, S., Shen, W., Shi, D., Liu, D.: Coordinated motion control for a wheel-leg robot with speed consensus strategy. IEEE/ASME Trans. Mechatronics 25(3), 1366–1376 (2020)

    Google Scholar 

  26. Peng, K., Guan, G., Xu, W.: A small morphing leg-wheel hybrid quadruped robot*. In: Proceeding of the IEEE International Conference on Information and Automation, pp. 933–938 (2018)

  27. Qu, M., Wang, H., Rong, Y.: Dynamic modeling and driving parameter prediction of mechanical leg of wheel-leg hybrid robot. Binggong Xuebao/Acta Armamentarii 38, 1619–1629 (2017)

    Google Scholar 

  28. Raja, R., Dutta, A., Venkatesh, K.S.: New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Robotics & Autonomous Systems 72 (2015)

  29. Sartori, D., Quagliotti, F., Rutherford, M.J., Valavanis, K.P.: Implementation and testing of a backstepping controller autopilot for fixed-wing uavs. J. Intell. Robot. Syst. 76(3-4), 505–525 (2014)

    Article  Google Scholar 

  30. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of hyq-a hydraulically and electrically actuated quadruped robot. Proc. Institut. Mech. Eng. Part I J. Syst. Contr. Eng. 225(I6), 831–849 (2011)

    Google Scholar 

  31. Seok, S., Wang, A., Meng Yee Chuah, Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot. In: 2013 IEEE International Conference on Robotics and Automation, pp 3307–3312 (2013)

  32. Smith, J.A., Sharf, I., Trentini, M.: Paw: a hybrid wheeled-leg robot. In: IEEE International Conference on Robotics & Automation, pp 4043–4048 (2006)

  33. Spong, M.W., Vidyasagar, M.: Robot dynamics and control. John Wiley & Sons (2008)

  34. Sreenivasan, S.V., Wilcox, B.H.: Stability and traction control of an actively actuated micro-rover. J. Field Robot. 11(6), 487–502 (2010)

    Google Scholar 

  35. Xu, K., Wang, S., Wang, X., Wang, J., Chen, Z., Liu, D.: High-flexibility locomotion and whole-torso control for a wheel-legged robot on challenging terrain*. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp 10,372–10,377 (2020)

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant 2019YFC1511401 and the National Natural Science Foundation of China under Grant 61103157.

Author information

Authors and Affiliations

Authors

Contributions

Zhihua Chen: Writing, Editing, simulation, experiment; Jiehao Li: Writing, Editing, experiment; Junzheng Wang: Reviewing and Supervision; Shoukun Wang: Reviewing, Supervision, Analyses and Finalizing; Jiangbo Zhao: Reviewing and Supervision; Jing Li: Reviewing and Supervision; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shoukun Wang.

Ethics declarations

Consent for Publication

The authors declare no interest conflict regarding the publication of this paper.

Conflict of Interests

No conflict of interest exists in the submission of this manuscript.

Additional information

Availability of data and material

The data that support the findings of this study are available from the corresponding author Prof. Shoukun Wang upon reasonable request.

Consent to participate

All authors have participated in conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content, and approval of the final version.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhihua Chen and Jiehao Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 14.2 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, J., Wang, J. et al. Towards Hybrid Gait Obstacle Avoidance for a Six Wheel-Legged Robot with Payload Transportation. J Intell Robot Syst 102, 60 (2021). https://doi.org/10.1007/s10846-021-01417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01417-y

Keywords

Navigation