Agrawal, P., Ratnoo, A., Ghose, D.: Inverse optical flow based guidance for UAV navigation through urban canyons. Aerosp. Sci. Technol. 68, 163–178 (2017)
Article
Google Scholar
Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)
Article
Google Scholar
Alvarez, H., Paz, L.M., Sturm, J., Cremers, D.: Collision avoidance for quadrotors with a monocular camera. In: Experimental Robotics, pp 195–209. Springer (2016)
Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)
Article
Google Scholar
Bauer, P., Hiba, A., Bokor, J., Zarandy, A.: Three dimensional intruder closest point of approach estimation based-on monocular image parameters in aircraft sense and avoid. J. Intell. Robot. Syst. 93 (1-2), 261–276 (2019)
Article
Google Scholar
Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using single image perspective cues. In: Robotics and automation (ICRA), 2011 IEEE international conference, pp. 5776–5783. IEEE (2011)
Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv:1605.07678 (2016)
Chebrolu, N., Läbe, T., Stachniss, C.: Robust long-term registration of UAV images of crop fields for precision agriculture. IEEE Robot. Autom. Lett. 3(4), 3097–3104 (2018)
Article
Google Scholar
Chong, K.L., Kanniah, K.D., Pohl, C., Tan, K.P.: A review of remote sensing applications for oil palm studies. Geo. Spat. Inf. Sci. 20(2), 184–200 (2017)
Article
Google Scholar
Cui, J.Q., Lai, S., Dong, X., Chen, B.M.: Autonomous navigation of UAV in foliage environment. J. Intell. Robot. Syst. 84(1-4), 259–276 (2016)
Article
Google Scholar
Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J. A., Hebert, M.: Robust monocular flight in cluttered outdoor environments. arXiv:1604.04779 (2016)
Eresen, A., Mamolu, N., Efe, M.N.: Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment. Expert Sys. Appl. 39(1), 894–905 (2012)
Article
Google Scholar
Esrafilian, O., Taghirad, H.D.: Autonomous flight and obstacle avoidance of a quadrotor by monocular SLAM. In: Robotics and Mechatronics (ICROM), 2016 4th International Conference, pp. 240–245. IEEE (2016)
Gageik, N., Benz, P., Montenegro, S.: Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access 3, 599–609 (2015)
Article
Google Scholar
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Giusti, A., Guzzi, J., Ciresan, D.C., He, F. L., Rodríguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2016)
Article
Google Scholar
Gosiewski, Z., Ciesluk, J., Ambroziak, L.: Vision-based obstacle avoidance for unmanned aerial vehicles. In: 2011 4th International Congress on Image and Signal Processing (CISP), vol. 4, pp 2020–2025. IEEE (2011)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Herwitz, S., Johnson, L., Dunagan, S., Higgins, R., Sullivan, D., Zheng, J., Lobitz, B., Leung, J., Gallmeyer, B., Aoyagi, M.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44(1), 49–61 (2004)
Article
Google Scholar
Ho, H., De Wagter, C., Remes, B., De Croon, G.: Optical-flow based self-supervised learning of obstacle appearance applied to MAV landing. Robot. Auton. Syst. 100, 78–94 (2018)
Article
Google Scholar
Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285 (2016)
Article
Google Scholar
Hui, X., Bian, J., Yu, Y., Zhao, X., Tan, M.: A novel autonomous navigation approach for UAV power line inspection. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 634–639. IEEE (2017)
Huuskonen, J., Oksanen, T.: Soil sampling with drones and augmented reality in precision agriculture. Comput. Electron. Agric. 154, 25–35 (2018)
Article
Google Scholar
Iacono, M., Sgorbissa, A.: Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton. Syst. 106, 38–46 (2018)
Article
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)
Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for UAVs: Current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)
Article
Google Scholar
Kim, D.K., Chen, T.: Deep neural network for real-time autonomous indoor navigation. arXiv:1511.04668 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Lee, J.O., Lee, K.H., Park, S.H., Im, S.G., Park, J.: Obstacle avoidance for small UAVs using monocular vision. Aircr. Eng. Aerosp. Technol. 83(6), 397–406 (2011)
Article
Google Scholar
Lelong, C.C., Burger, P., Jubelin, G., Roux, B., Labbé, S., Baret, F.: Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 8(5), 3557–3585 (2008)
Article
Google Scholar
Liu, P., ElGeneidy, K., Pearson, S., Huda, M.N., Neumann, G., et al.: Towards real-time robotic motion planning for grasping in cluttered and uncertain environments. In: Towards Autonomous Robotic Systems: 19th Annual Conference, TAROS 2018, Bristol, UK July 25–27, 2018, Proceedings, vol. 10965, p 481. Springer (2018)
Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances. Nonlinear Dyn. 98(2), 1447–1464 (2019)
Article
Google Scholar
Liu, Z., Zhang, Y., Yuan, C., Ciarletta, L., Theilliol, D.: Collision avoidance and path following control of unmanned aerial vehicle in hazardous environment. J. Intell. Robot. Syst., 1–18 (2018)
Ma, Z., Wang, C., Niu, Y., Wang, X., Shen, L.: A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles. Robot. Auton. Syst. 100, 108–118 (2018)
Article
Google Scholar
Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T.A.: Fast robust monocular depth estimation for obstacle detection with fully convolutional networks. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference, pp. 4296–4303. IEEE (2016)
Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T.A.: J-mod 2: Joint monocular obstacle detection and depth estimation. IEEE Robot. Autom. Lett. 3(3), 1490–1497 (2018)
Article
Google Scholar
Matthew, D., Fergus, R.: Visualizing and understanding convolutional neural networks. In: Proceedings of the 13th European Conference Computer Vision and Pattern Recognition, Zurich, Switzerland, pp. 6–12 (2014)
Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Autonomous navigation for micro aerial vehicles in complex gnss-denied environments. J. Intell. Robot. Sys. 84(1-4), 199–216 (2016)
Article
Google Scholar
Qu, T., Zhang, Q., Sun, S.: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks. Multimed. Tools Appl. 76(20), 21651–21663 (2017)
Article
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive UAV control in cluttered natural environments. arXiv:1211.1690 (2012)
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: Deepfruits: A fruit detection system using deep neural networks. Sensors 16(8), 1222 (2016)
Article
Google Scholar
Schauwecker, K., Zell, A.: On-board dual-stereo-vision for the navigation of an autonomous MAV. J. Intell. Robot. Syst. 74(1-2), 1–16 (2014)
Article
Google Scholar
Serres, J.R., Ruffier, F.: Optic flow-based collision-free strategies: From insects to robots. Arthropod Struct. Dev. 46(5), 703–717 (2017)
Article
Google Scholar
Shyam, R.A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez, S., Neumann, G.: Improving local trajectory optimisation using probabilistic movement primitives. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2666–2671 (2019)
Wang, X., Cheng, P., Liu, X., Uzochukwu, B.: Fast and accurate, convolutional neural network based approach for object detection from UAV. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 3171–3175. IEEE (2018)
Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular vision based obstacle avoidance through deep reinforcement learning. arXiv:1706.09829 (2017)
Yao, H., Yu, Q., Xing, X., He, F., Ma, J.: Deep-learning-based moving target detection for unmanned air vehicles. In: 2017 36th Chinese Control Conference (CCC), pp. 11459–11463. IEEE (2017)
Zufferey, J.C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans. Robot. 22(1), 137–146 (2006)
Article
Google Scholar