Model Reference Adaptive Control of Switched Dynamical Systems with Applications to Aerial Robotics

Abstract

This paper presents an adaptive control law for unknown nonlinear switched plants that must follow the trajectory of user-defined linear switched reference models. The effectiveness of the proposed control architecture is proven in two alternative frameworks, that is, analyzing Carathéodory and Filippov solutions of discontinuous differential equations. Numerical and experimental data verify the applicability of the theoretical results to problems of practical interest. The proposed numerical simulation involves the design of a model reference adaptive control law to regulate the roll dynamics of a reconfigurable delta-wing aircraft. The proposed flight tests involve an aerial robot tasked with autonomously mounting a camera of unknown inertial properties to a vertical surface.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alexis, K., Darivianakis, G., Burri, M., Siegwart, R.: Aerial robotic contact-based inspection: Planning and control. Auton. Robot. 40(4), 631–655 (2016). https://doi.org/10.1007/s10514-015-9485-5

    Article  Google Scholar 

  2. 2.

    Anderson, R.B.: Flight experiment of a tilt-rotor quadcopter installing a camera. https://youtu.be/f6wG7IdPXoc. Last accessed 11/29/2019 (2019)

  3. 3.

    Anderson, R.B., Burke, J.P., Marshall, J.A., L’Afflitto, A.: Robust Adaptive Control for Constrained Tilt-Rotor Quadcopters of Unknown Inertial Properties. In: American Control Conference, pp. 2922–2927. https://doi.org/10.23919/ACC.2019.8814780 (2019)

  4. 4.

    Ang, K.Z.Y., Cui, J., Pang, T., Li, K., Wang, K., Ke, Y., Chen, B.M.: Development of an Unmanned Tail-Sitter with Reconfigurable Wings: U-Lion. In: IEEE International Conference on Control Automation, pp. 750–755. https://doi.org/10.1109/ICCA.2014.6871015 (2014)

  5. 5.

    Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (2008)

  6. 6.

    Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Communications and Control Engineering. Springer, London (1999)

  7. 7.

    Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. Taylor & Francis, New York (1975)

  8. 8.

    Carathéodory, C.: Vorlesungen Über Reelle Funktionen. Teubner, Berlin (1918)

  9. 9.

    Cheng, H., Dong, C., Jiang, W., Wang, Q., Hou, Y.: Non-fragile switched \(h_{\infty }\) control for morphing aircraft with asynchronous switching. Chin. J. Aeronaut. 30(3), 1127–1139 (2017). https://doi.org/10.1016/j.cja.2017.01.008

    Article  Google Scholar 

  10. 10.

    Chiang, M.L., Fu, L.C.: Adaptive stabilization of a class of uncertain switched nonlinear systems with backstepping control. Automatica 50(8), 2128–2135 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Clarke, F.H.: Optimization and nonsmooth analysis. Society of Industrial and Applied Mathematics, Philadelphia (1989)

  12. 12.

    Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory. Graduate texts in mathematics. springer, New York NY (1997)

  13. 13.

    Cortés, J.: Discontinuous dynamical systems. IEEE Control. Syst. Mag. 28(3), 36–73 (2008). https://doi.org/10.1109/MCS.2008.919306

    MathSciNet  Article  Google Scholar 

  14. 14.

    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory And Applications. Series in Systems and Control. Taylor & Francis, New York (1998)

  15. 15.

    Federer, H.: Geometric measure theory. Springer, Berlin (2014)

  16. 16.

    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Springer, Amesterdam (1988)

  17. 17.

    Fischer, N., Kamalapurkar, R., Dixon, W.E.: LaSalle-Yoshizawa corollaries for nonsmooth systems. IEEE Trans. Autom. Control 58(9), 2333–2338 (2013). https://doi.org/10.1109/TAC.2013.2246900

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gong, L., Wang, Q., Dong, C.: Disturbance rejection control of morphing aircraft based on switched nonlinear systems. Nonlinear Dyn. 96(2), 975–995 (2019). https://doi.org/10.1007/s11071-019-04834-9

    Article  Google Scholar 

  19. 19.

    Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach. Princeton University Press, Princeton (2008)

  20. 20.

    Hájek, O.: Discontinuous differential equations, i. J. Differ. Equ. 32(2), 149–170 (1979). https://doi.org/10.1016/0022-0396(79)90056-1

    MathSciNet  Article  Google Scholar 

  21. 21.

    Heredia, G., Duran, A., Ollero, A.: Modeling and simulation of the HADA reconfigurable UAV. J. Intell. Robot. Syst. 65(1), 115–122 (2012). https://doi.org/10.1007/s10846-011-9561-9

    Article  Google Scholar 

  22. 22.

    Hespanha, J.P., Liberzon, D., Morse, A.S.: Overcoming the limitations of adaptive control by means of logic-based switching. Syst. Control Lett. 49(1), 49–65 (2003). https://doi.org/10.1016/S0167-6911(02)00342-0

    MathSciNet  Article  Google Scholar 

  23. 23.

    Hu, S.: Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl 154(2), 377–390 (1991). https://doi.org/10.1016/0022-247X(91)90044-Z

    MathSciNet  Article  Google Scholar 

  24. 24.

    Jiang, H.B.: Hybrid adaptive and impulsive synchronisation of uncertain complex dynamical networks by the generalised Barbalat’s lemma. IET Control Theory Appl. 3(10), 1330–1340 (2009). https://doi.org/10.1049/iet-cta.2008.0335

    MathSciNet  Article  Google Scholar 

  25. 25.

    Jiao, X., Jiang, J.: Design of adaptive switching control for hypersonic aircraft. Adv. Mech. Eng. 7(10), 1687814015610, 465 (2015). https://doi.org/10.1177/1687814015610465

    Google Scholar 

  26. 26.

    Kamalapurkar, R., Rosenfeld, J.A., Parikh, A., Teel, A.R., Dixon, W.E.: Invariance-like results for nonautonomous switched systems. IEEE Trans. Autom. Control 64(2), 614–627 (2019). https://doi.org/10.1109/TAC.2018.2838055

    MathSciNet  Article  Google Scholar 

  27. 27.

    Khalil, H.K.: Nonlinear systems. Prentice Hall, Princeton (2002)

  28. 28.

    Kosmatopoulos, E.B., Ioannou, P.A.: A switching adaptive controller for feedback linearizable systems. IEEE Trans. Autom. Control 44(4), 742–750 (1999). https://doi.org/10.1109/9.754811

    MathSciNet  Article  Google Scholar 

  29. 29.

    Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Supervisory control of hybrid systems. Proc. IEEE 88(7), 1026–1049 (2000). https://doi.org/10.1109/5.871307

    Article  Google Scholar 

  30. 30.

    Krasovskii, N.N.: Stability of Motion. Applications of Lyapunov’s Second Method to Differential Systems and Equations With Delay. Stanford University Press, Stanford (1963)

  31. 31.

    L’Afflitto, A.: A mathematical perspective on flight dynamics and control. Springer, London (2017)

  32. 32.

    L’Afflitto, A., Anderson, R.B., Mohammadi, K.: An introduction to nonlinear robust control for unmanned quadrotor aircraft: How to design control algorithms for quadrotors using sliding mode control and adaptive control techniques. IEEE Control. Syst. Mag. 38(3), 102–121 (2018). https://doi.org/10.1109/MCS.2018.2810559

    MathSciNet  Article  Google Scholar 

  33. 33.

    Lavretsky, E., Wise, K.: Robust and adaptive control: With aerospace Spplications. springer, London (2012)

  34. 34.

    Levant, A.: Introduction to High-Order Sliding Modes. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control in Engineering, Chapter 1. Marcel Dekker, Inc., Basel (2002)

  35. 35.

    Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2016)

    Google Scholar 

  36. 36.

    Liberzon, D.: Switching in systems and control. Springer, Boston (2003)

  37. 37.

    Marconi, L., Naldi, R.: Control of aerial robots: Hybrid force and position feedback for a ducted fan. IEEE Control. Syst. Mag. 32(4), 43–65 (2012). https://doi.org/10.1109/MCS.2012.2194841

    MathSciNet  Article  Google Scholar 

  38. 38.

    Marconi, L., Naldi, R., Gentili, L.: Modelling and control of a flying robot interacting with the environment. Automatica 47(12), 2571–2583 (2011). https://doi.org/10.1016/j.automatica.2011.09.020

    MathSciNet  Article  Google Scholar 

  39. 39.

    Miller, D.E., Davison, E.J.: An adaptive controller which provides an arbitrarily good transient and steady-state response. IEEE Trans. Autom. Control 36(1), 68–81 (1991). https://doi.org/10.1109/9.62269

    MathSciNet  Article  Google Scholar 

  40. 40.

    Minyue, F., Barmish, B.: Adaptive stabilization of linear systems via switching control. IEEE Trans. Autom. Control 31(12), 1097–1103 (1986). https://doi.org/10.1109/TAC.1986.1104187

    MathSciNet  Article  Google Scholar 

  41. 41.

    Morse, A.S.: Supervisory control of families of linear set-point controllers – Part 1: Exact matching. IEEE Trans. Autom. Control 41(10), 1413–1431 (1996). https://doi.org/10.1109/9.539424

    Article  Google Scholar 

  42. 42.

    Morse, A.S.: Supervisory control of families of linear set-point controllers – Part 2: Robustness. IEEE Trans. Autom. Control 42(11), 1500–1515 (1997). https://doi.org/10.1109/9.649687

    Article  Google Scholar 

  43. 43.

    Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997). https://doi.org/10.1109/9.554398

    MathSciNet  Article  Google Scholar 

  44. 44.

    Paden, B., Sastry, S.: A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circ. Syst. 34(1), 73–82 (1987). https://doi.org/10.1109/TCS.1987.1086038

    MathSciNet  Article  Google Scholar 

  45. 45.

    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Springer, Vienna (2000)

  46. 46.

    Seigler, T.M., Neal, D.A., Bae, J.S., Inman, D.J.: Modeling and flight control of large-scale morphing aircraft. AIAA J. Aircraft 44(4), 1077–1087 (2007). https://doi.org/10.2514/1.21439

    Article  Google Scholar 

  47. 47.

    Shorten, R.N., Narendra, K.S.: On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Autom. Control 48(4), 618–621 (2003). https://doi.org/10.1109/TAC.2003.809795

    MathSciNet  Article  Google Scholar 

  48. 48.

    Sofla, A., Meguid, S., Tan, K., Yeo, W.: Shape morphing of aircraft wing: Status and challenges. Mater. Des. 31(3), 1284–1292. https://doi.org/10.1016/j.matdes.2009.09.011 (2010)

  49. 49.

    Spraker, J.S., Biles, D.C.: A comparison of the Carathéodory and Filippov solution sets. J. Math. Anal. Appl. 198(2), 571–580 (1996). https://doi.org/10.1006/jmaa.1996.0099

    MathSciNet  Article  Google Scholar 

  50. 50.

    Stein, E.M., Shakarchi, R.: Real analysis. Princeton, Princeton (2009)

  51. 51.

    Tan, C., Tao, G., Qi, R., Yang, H.: A direct MRAC based multivariable multiple-model switching control scheme. Automatica 84, 190–198 (2017). https://doi.org/10.1016/j.automatica.2017.07.020

    MathSciNet  Article  Google Scholar 

  52. 52.

    Utkin, V.I.: Sliding Mode Control: Mathematical Tools, Design and Applications, pp. 289–347. Springer, Berlin. https://doi.org/10.1007/978-3-540-77653-6_5 (2008)

  53. 53.

    Vasista, S., Tong, L., Wong, K.: Realization of morphing wings: A multidisciplinary challenge. AIAA J. Aircraft 49(1), 11–28 (2012). https://doi.org/10.2514/1.C031060

    Article  Google Scholar 

  54. 54.

    Vu, L., Liberzon, D.: Supervisory control of uncertain linear time-varying systems. IEEE Trans. Autom. Control 56(1), 27–42 (2011). https://doi.org/10.1109/TAC.2010.2060244

    MathSciNet  Article  Google Scholar 

  55. 55.

    Wang, Q., Hou, Y., Dong, C.: Model reference robust adaptive control for a class of uncertain switched linear systems. Int. J. Robust Nonlinear Control 22(9), 1019–1035 (2012). https://doi.org/10.1002/rnc.1744

    MathSciNet  Article  Google Scholar 

  56. 56.

    Wang, X., Zhao, J., Tang, Y.: State tracking model reference adaptive control for switched nonlinear systems with linear uncertain parameters. J. Control Theory Appl. 10(3), 354–358 (2012). https://doi.org/10.1007/s11768-012-1018-6

    MathSciNet  Article  Google Scholar 

  57. 57.

    Wu, C., Zhao, J., Sun, X.M.: Adaptive tracking control for uncertain switched systems under asynchronous switching. Int. J. Robust Nonlinear Control 25(17), 3457–3477 (2015). https://doi.org/10.1002/rnc.3275

    MathSciNet  Article  Google Scholar 

  58. 58.

    Xie, J., Li, S., Yan, H., Yang, D.: Model reference adaptive control for switched linear systems using switched multiple models control strategy. J. Frankl. Inst. 356(5), 2645–2667 (2019). https://doi.org/10.1016/j.jfranklin.2018.10.036

    MathSciNet  Article  Google Scholar 

  59. 59.

    Xie, J., Zhao, J.: Model reference adaptive control for switched LPV systems and its application. IET Control Theory Appl. 10(17), 2204–2212 (2016). https://doi.org/10.1049/iet-cta.2015.1332

    MathSciNet  Article  Google Scholar 

  60. 60.

    Xie, J., Zhao, J.: Model reference adaptive control for nonlinear switched systems under asynchronous switching. Int. J. Adapt. Control Signal Process. 31(1), 3–22 (2017). https://doi.org/10.1002/acs.2666

    MathSciNet  Article  Google Scholar 

  61. 61.

    Xie, J., Zhao, J.: \(h_{\infty }\) model reference adaptive control for switched systems based on the switched closed-loop reference model. Nonlinear Anal. Hybrid Syst. 27, 92–106 (2018). https://doi.org/10.1016/j.nahs.2017.07.003

    MathSciNet  Article  Google Scholar 

  62. 62.

    Xie, W., Wen, C., Li, Z.: Input-to-state stabilization of switched nonlinear systems. IEEE Trans. Autom. Control 46(7), 1111–1116 (2001). https://doi.org/10.1109/9.935066

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea L’Afflitto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the US Army Research Lab (ARL), DARPA, and ONR under Grants no. 40304747, D18AP00069, and N000141912422, respectively.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, R.B., Marshall, J.A., L’Afflitto, A. et al. Model Reference Adaptive Control of Switched Dynamical Systems with Applications to Aerial Robotics. J Intell Robot Syst (2020). https://doi.org/10.1007/s10846-020-01260-7

Download citation

Keywords

  • Model reference adaptive control
  • Switched dynamical systems
  • Carathéodory solutions
  • Filippov solutions
  • Aerial robots