Skip to main content
Log in

Calibration of Low Cost IMU’s Inertial Sensors for Improved Attitude Estimation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

To better solve the attitude of robots with high precision using low cost inertial measurement unit (IMU), we design novel calibration methods, namely twelve positions calibration method, method based on ellipsoid fitting and eight positions calibration method, to effectively calibrate accelerometer, magnetometer and gyroscope, respectively. An attitude estimator using data from the multi-sensors calibrated by our proposed methods was designed based on Kalman Filter, with its estimated value of the attitude prediction deviation fed back to the predicted value as the prediction deviation at the end of each filtering period. Finally, relevant experiments are designed to verify the validity of the proposed attitude solution method as well as the proposed calibration methods, with results showing that the roll and pitch angle measured by the attitude measurement unit have an effective resolution of 0.1° and the yaw angle has an effective resolution of 1°. The innovation of this paper is that the proposed calibration methods can be carried out with simple tools, eliminating the need for expensive and complicated multi-axis turntables, and the designed attitude measurement unit based on calibrated low cost IMU’s inertial sensors has smaller size, higher resolution in roll and pitch, and much lower cost compared with the commercial MTi-G-710. The accuracy of the attitude solution for such IMU is high enough for the application on robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, T., Cempini, M., Oddo, C. M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120-136 (2015)

  2. Proietti, T., Crocher, V., Roby-Brami, A., Jarrassé, N.: Upperlimb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)

    Article  Google Scholar 

  3. Young, A.J., Ferris, D.P.: State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017)

    Article  Google Scholar 

  4. Li, J., Zuo, S., Xu, C., Zhang, L., Dong, M., Tao, C., Ji, R.: Influence of a compatible design on physical human-robot interaction force: a case study of a self-adapting lower-limb exoskeleton mechanism. J. Intell. Robot. Syst. 98, 525C538 (2020)

  5. Hussain, S., Jamwal, P.K., Ghayesh, M.H.: State-of-the-art robotic devices for ankle rehabilitation Mechanism and control review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 231(12), 1224–1234 (2017)

    Article  Google Scholar 

  6. Kong, W., Sessa, S., Cosentino, S., Zecca, M., Saito, K., Wang, C., Imtiaz, U., Lin, Z., Bartolomeo, L., Ishii, H., Ikai, T., Takanishi, A.: Development of a real-time imu-based motion capture system for gait rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 2100–2105 (2013)

  7. Ahmad, N., Ghazilla, R.A.R., Khairi, N.M., Kasi, V.: Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Process. Syst. 1(2), 256–262 (2013)

  8. Van Meulen, F.B., Van Beijnum, B.F., Buurke, J.H., Veltink, P.H.: Assessment of lower arm movements using one inertial sensor. In: Proceedings of International Conference on Rehabilitation Robotics, pp. 1407–1412 (2017)

  9. Chen, G., Salim, V., Yu, H.: A novel gait phase-based control strategy for a portable knee-ankle-foot robot. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 571–576 (2015)

  10. Liu, Z., Chang, W., Sheng, S., Li, L., Soo, Y.G., Yeong, C.F., Odagaki, M., Duan, F.: A novel upper limb training system based on ur5 using semg and imu sensors. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 1069–1074 (2017)

  11. Wilkening, A., Stöppler, H., Ivlev, O.: Adaptive assistive control of a soft elbow trainer with self-alignment using pneumatic bending joint. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 729–734 (2015)

  12. Abdel-Hafez, M.F.: On the development of an inertial navigation errorbudget system. J. Franklin Inst. 348(1), 24–44 (2011)

    Article  Google Scholar 

  13. Fang, B., Chou, W., Ding, L.: An optimal calibration method for a mems inertial measurement unit. Int. J. Adv. Robot. Syst. 11(2), 1–14 (2014)

    Article  Google Scholar 

  14. Beravs, T., Podobnik, J., Munih, M.: Three-axial accelerometer calibration using kalman filter covariance matrix for online estimation of optimal sensor orientation. IEEE Trans. Instrum. Measur. 61(9), 2501–2511 (2012)

    Article  Google Scholar 

  15. Qureshi, U., Golnaraghi, F.: An algorithm for the in-field calibration of a mems imu. IEEE Sens. J. 17(22), 7479–7486 (2017)

    Article  Google Scholar 

  16. Alonso, R., Shuster, M.D.: Complete linear attitude-independent magnetometer calibration. J. Astron. Sci. 50(4), 433–452 (2017)

    Article  Google Scholar 

  17. Kok, M., Bschön, T.: Magnetometer calibration using inertial sensors. IEEE Sens. J. 16(14), 5679–5689 (2016)

    Article  Google Scholar 

  18. Vasconcelos, J.F., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: A geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans. Aerosp. Electron. Syst. 41(1), 172–177 (2008)

  19. Wu, Y., Shi, W.: On calibration of three-axis magnetometer. IEEE Sens. J. 15(11), 6424–6431 (2015)

    Article  Google Scholar 

  20. Pang, H., Pan, M., Chen, J., Li, J., Zhang, Q., Luo, S.: Integrated calibration and magnetic disturbance compensation of three-axis magnetometers. Measurement 93, 409–413 (2016)

    Article  Google Scholar 

  21. Han, K., Han, H., Wang, Z., Xu, F.: Extended kalman filter based gyroscope aided magnetometer calibration for consumer electronic devices. IEEE Sens. J. 17(1), 63–71 (2016)

    Google Scholar 

  22. Wu, Y., Pei, L.: Gyroscope calibration via magnetometer. IEEE Sens. J. 17(16), 5269–5275 (2017)

    Article  Google Scholar 

  23. Särkkä, O., Nieminen, T., Suuriniemi, S., Kettunen, L.: A multiposition calibration method for consumer-grade accelerometers, gyroscopes, and magnetometers to field conditions. IEEE Sens. J. 17 (11), 3470–3481 (2017)

    Article  Google Scholar 

  24. Bonnet, V., Mazza, C., Fraisse, P., Cappozzo, A.: Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. IEEE Trans. Biomed. Eng. 60(7), 1920–1926 (2013)

    Article  Google Scholar 

  25. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2019)

    Article  Google Scholar 

  26. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Article  Google Scholar 

  27. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive NN control for MIMO nonlinear systems with full state constraints and actuator hysteresis. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2019.2944761

  28. Brescianini, D., Jung, J. Y., Jang, I.H., Park, H.S., Riener, R.: INS/EKF-Based stride length, height and direction intent detection for walking assistance robots. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 1–5 (2011)

  29. Joukov, V., Bonnet, V., Karg, M., Venture, G., Kulić, D.: Rhythmic extended kalman filter for gait rehabilitation motion estimation and segmentation. IEEE Trans. Neural Syst. Rehab. Eng. 26(2), 407–418 (2018)

    Article  Google Scholar 

  30. Dong, M., Yao, G., Li, J., Zhang, L.: Research on attitude interpolation and tracking control based on improved orientation vector SLERP method. Robotica 38(4), 719–731 (2020)

    Article  Google Scholar 

  31. Kok, M., Hol, J.D., Schon, T.B., Gustafsson, F., Luinge, H.: Calibration of a magnetometer in combination with inertial sensors. In: Proceedings of 15th International Conference on Information Fusion, pp. 787–793 (2012)

  32. Hol, J.D.: Sensor fusion and calibration of inertial sensors, vision, ultra-wideband and GPS. PhD thesis, Linkping University (2011)

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61903011, 51675008 and 51705007), Beijing Natural Science Foundation (Grant Nos. 3204036, 17L20019, 3171001), and Beijing Postdoctoral Research Foundation (Grant No. Q6001002201901)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Yao, G., Li, J. et al. Calibration of Low Cost IMU’s Inertial Sensors for Improved Attitude Estimation. J Intell Robot Syst 100, 1015–1029 (2020). https://doi.org/10.1007/s10846-020-01259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01259-0

Keywords

Navigation