Skip to main content
Log in

A New Research Model for Higher Risk ACTIVITES Applied to the Use of Small Unmanned Aircraft for Data Gathering Operations

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Lawrence, H.: Aviation and the role of government. Kendall/Hunt Publishing, Dubuque (2008)

    Google Scholar 

  2. Lim, Y., Bassein-Capssa, V., Ramasamy, S., Liu, J., Sabatini, R.: Commercial airline single-pilot operations: System design and pathways to certification. IEEE Aerospace and Electronic Systems Magazine. 32(7), 4–21 (2017). https://doi.org/10.1109/MAES2017.160175

  3. Mariani, R.L.: Rise of the drones. The Brief. 43(4), 19 (2014)

    Google Scholar 

  4. Myers, P. L. (2016). SMS derived vs. public perceived risk in aviation technology acceptance (Literature Review). International Journal of Aviation, Aeronautics, and Aerospace, 3(4). doi:10.15394/ijaaa.2016.1141

  5. Andersen, M. (2015). Technology device ownership: 2015. Pew Research Center. Retrieved from www.pewinternet.org/2015/10/29/technology-device-ownership-2015/

  6. Federal Aviation Administration (2018). The administrator’s fact book. U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/news/media/2018_administrators_fact_book.pdf

  7. Federal Aviation Administration (2017e). The administrator’s fact book. U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/news/media/2017_administrators_fact_book.pdf

  8. Domestic drones: Balancing privacy and safety with innovation and opportunity (2016). Washington: Congressional Digest.

  9. Federal Aviation Administration (2016a). Model aircraft operating standards. (Advisory Circular 91-57A Change: 1). U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_91-57A_Ch_1.pdf

  10. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials. 18(4), 2624–2661 (2016). https://doi.org/10.1109/COMST.2016.2560343

    Article  Google Scholar 

  11. Terwilliger, B., Vincenzi, D., Ison, D., Witcher, K., Thirtyacre, D., & Khalid, A. (2015). Influencing factors for use of unmanned aerial systems in support of aviation accident and emergency response. Journal of Automation and Control Engineering, 3(3), 246-252. doi:10.12720/joace.3.3.246-252

  12. Terwilliger, B., Ison, D. C., Robbins, J., & Vincenzi, D. A. (2017). Small unmanned aircraft systems guide: Exploring designs, operations, regulations, and economics. Newcastle, Washington: Aviation Supplies & Academics, Inc.

  13. Federal regulation of domestic drones: Control of public, civil, and model aircraft operations. (2016). Congressional Digest, 95(6), 7.

  14. Federal Aviation Administration (2016b). Small unmanned aircraft systems (sUAS). (Advisory Circular 107-2). U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/regulations_policies/advisory_circulars/ index.cfm/go/document.information/documentID/1019962

  15. Parnell, G. S., Driscoll, P. J., & Henderson, D. L. (2011). Decision making in systems engineering and management. (2nd ed.). Hoboken, NJ: Wiley and Sons. doi:https://doi.org/10.1002/9780470926963

  16. Aeronautics and Space, 14 C.F.R. pt. 1 (2017). Retrieved from https://www.ecfr.gov/cgi-bin/text-idx?mc=true&node=pt14.2.107&rgn=div5

  17. FAA Modernization and Reform Act of 2012, Pub L. No. 112-95, § 40101 11 Stat. 126. (2012a). Retrieved from https//www.gpo.gov/fdsys/pkg/PLAW-112pub95/htm/PLAW-112publ95.htm

  18. FAA Modernization and Reform Act of 2012, 49 U.S.C. § 40101. (2012b). Retrieved from https://www.gpo.gov/fdsys/pkg/USCODE-2011-title49/html/USCODE-2011-title49.htm

  19. Federal Aviation Administration. (2017b). Unmanned aircraft systems. U.S. Department of Transportation, Washington D.C. Retrieved from https://www.faa.gov/uas/

  20. Blitz, M.J., Grimsley, J., Henderson, S.E., Thai, J.: Regulating drones under the first and fourth amendments. William and Mary Law Review. 57(1), 49 (2015)

    Google Scholar 

  21. Federal Aviation Administration. (2017c). Interpretation of the special rule for model aircraft. U.S. Department of Transportation, Washington D.C. Retrieved from ttps://www.faa.gov/uas/media/model_aircraft_spec_rule.pdf

  22. Department of Transportation, Federal Aviation Administration Final Rule, 14 C.F.R. § 1.1 (2018). Retrieved from https://www.gpo.gov/fdsys/pkg/CFR-2002-title14-vol3/pdf/CFR-2002-title14-vol3-chapI-toc-id4.pdf

  23. Clothier, R.A., Greer, D.A., Greer, D.G., Mehta, A.M.: Risk perception and the public acceptance of drones. Risk Analysis. 35(6), 1167–1183 (2015). https://doi.org/10.1111/risa.12330

    Article  Google Scholar 

  24. Ramadan, Z. B., Farah, M. F., & Mrad, M. (2017; 2016). An adapted TPB approach to consumers' acceptance of service-delivery drones. Technology Analysis & Strategic Management, 29(7), 817-812. doi:https://doi.org/10.1080/09537325.2016.1242720

  25. Frew, E.W., Brown, T.X.: Airborne communication networks for small unmanned aircraft systems. Proceedings of the IEEE. 96(12), 2008–2037 (2008). https://doi.org/10.1109/JPROC.2008.2006127

    Article  Google Scholar 

  26. Paulson, C.A., Sóbester, A., Scanlan, J.P.: The rapid development of bespoke small unmanned aircraft: A proposed design loop. The Aeronautical Journal. 121(1235), 1683 (2017). https://doi.org/10.1017/aer.2017.99

    Article  Google Scholar 

  27. Sabatini, R., Cappello, F., Ramasamy, S., Gardi, A., Clothier, R.: An innovative navigation and guidance system for small unmanned aircraft using low-cost sensors. Aircraft Engineering and Aerospace Technology. 87(6), 540–545 (2015)

    Article  Google Scholar 

  28. Waraich, Q. R., Mazzuchi, T. A., Sarkani, S., & Rico, D. F. (2013). Minimizing human factors mishaps in unmanned aircraft systems. Ergonomics in Design: The Quarterly of Human Factors Applications, 21(1). Doi:10.177/ 1064804612463215

  29. Cutler, M., McLain, T., Beard, R., & Capozzi, B. (2010). Energy harvesting and mission effectiveness for small unmanned aircraft. doi:https://doi.org/10.2514/6.2010-8037

  30. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly. 13(3), 319–340 (1989). https://doi.org/10.2307/249008

    Article  Google Scholar 

  31. King, W.R., He, J.: A meta-analysis of the technology acceptance model. Information & Management. 43(6), 740 (2006). https://doi.org/10.1016/j.im.2006.05.003

    Article  Google Scholar 

  32. Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Information & Management. 40(3), 191–204 (2003). https://doi.org/10.1016/S0378-7206(01)00143-4

    Article  Google Scholar 

  33. Marangunić, N., Granić, A.: Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society. 14(1), 81–95 (2015). https://doi.org/10.1007/s10209-014-0348-1

    Article  Google Scholar 

  34. Gong, M., Xu, Y., Yu, Y.: An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education. 15(4), 365 (2004)

    Google Scholar 

  35. Teo, T., Ursavaa, A.F., Bahcekapili, E.: Efficiency of the technology acceptance model to explain pre-service teachers E14 intention to use technology. A Turkish study. Campus-Wide Information Systems. 28(2), 93–101 (2011). https://doi.org/10.1108/10650741111117798

    Article  Google Scholar 

  36. Ajzen, I.: The theory of planned behavior. Organizational Behavior and Human Decision Processes. 50(2), 179–211 (1991). https://doi.org/10.1016/0749-5978(91)90020-T

    Article  Google Scholar 

  37. Lee, W.J., Choi, H.C.: Understanding meeting planners’ internet use behavior: An extension to the theory of planned behavior. International Journal of Hospitality and Tourism Administration. 10(2), 109–128 (2009). https://doi.org/10.1080/15256480902850968

    Article  Google Scholar 

  38. Teo, T.: Examining the intention to use technology among pre-service teachers: An integration of the technology acceptance model and theory of planned behavior. Interactive Learning Environments. 20(1), 3–18 (2012). https://doi.org/10.1080/10494821003714632

    Article  Google Scholar 

  39. Casper, E.S.: The theory of planned behavior applied to continuing education for mental health professionals. Psychiatric Services. 58(10), 1324–1329 (2007). https://doi.org/10.1176/ps.2007.58.10.1324

    Article  Google Scholar 

  40. Morris, M.G., Venkatesh, V., Ackerman, P.L.: Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. IEEE Transactions on Engineering Management. 52(1), 69–84 (2005). https://doi.org/10.1109/TEM.2004.839967

    Article  Google Scholar 

  41. Lee, M.: Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications. 8(3), 130–141 (2009). https://doi.org/10.1016/j.elerap.2008.11.006

    Article  Google Scholar 

  42. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. Retrieved from http://misq.org/

  43. Venkatesh, V., Thong, J., & Xu, X (2012). Consumer acceptance and use of information technology. Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157.

  44. Lester, M. (2000). Communicate risk effectively. Chemical Engineering Progress, 96(6), 79. Retrieved from http://www.aiche.org/resources/publications/cep

  45. Sjöberg, L.: Factors in risk perception. Risk Analysis. 20(1), 1–12 (2000). https://doi.org/10.1111/0272-4332.00001

    Article  MathSciNet  Google Scholar 

  46. Hunter, R. (2001), The public perception of risk. Australasian Science, 22, 30-32. Retrieved from http://www.australasianscience.com.au

  47. Moussaïd, M.: Opinion formation and the collective dynamics of risk perception. PLoS One. 8(12), (2013). https://doi.org/10.1371/journal.pone.0084592

  48. Featherman, M.S., Pavlou, P.A.: Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human - Computer Studies. 59(4), 451–474 (2003). https://doi.org/10.1016/S1071-5819(03)00111-3

    Article  Google Scholar 

  49. Koerner, M. R. (2015). Drones and the fourth amendment: Redefining expectations of privacy. Duke Law Journal, 64(6), 1129 -1772. Retrieved from http://scholarship.law.duke.edu/dij/vol64/iss6/3

  50. Takahashi, T.T.: Drones in the national airspace. Journal of Air Law and Commerce. 77(3), 489 (2012)

    Google Scholar 

  51. McCormack, E. (2009). Exploring transportation applications of small unmanned aircraft. Institute of Transportation Engineers. ITE Journal, 79(12), 32.

  52. Alshare, K.A., Mesak, H.I., Grandon, E.E., Badri, M.A.: Examining the moderating role of national culture on an extended technology acceptance model. Journal of Global Information Technology Management. 14(3), 27–53 (2011). https://doi.org/10.1080/1097198X.2011.10856542

    Article  Google Scholar 

  53. Teo, T., Lee, C.B., Chai, C.S.: Understanding pre‐service teachers' computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning. 24(2), 128–143 (2008). https://doi.org/10.1111/j.1365-2729.2007.00247.x

    Article  Google Scholar 

  54. Thompson, R.L., Higgins, C.A., Howell, J.M.: Personal computing: Toward a conceptual model of utilization. MIS Quarterly. 15(1), 125–143 (1991). https://doi.org/10.2307/24944

    Article  Google Scholar 

  55. Rivis, A., Sheeran, P., Armitage, C. J., (2009). Expanding the affective and normative components of the theory of planned behavior: a meta-analysis of anticipated affect and moral norms. J. Applied Social Psychology, 39(12), 2985. doi:https://doi.org/10.1111/j.1559-1816.2009.00558.

  56. Cayne, B.S., Lechner, D.E. (eds.): The new lexicon Webster’s encyclopedic dictionary of the English language. Lexicon Publications, New York (1991)

    Google Scholar 

  57. Wu, I., Li, J., Fu, C.: The adoption of mobile healthcare by hospital's professionals: An integrative perspective. Decision Support Systems. 51(3), 587 (2011). https://doi.org/10.1016/j.dss.2011.03.003

    Article  Google Scholar 

  58. Chang, K., Chang, C.: Library self-service: Predicting user intentions related to self‐issue and return systems. The Electronic Library. 27(6), 938–949 (2009). https://doi.org/10.1108/02640470911004048

    Article  Google Scholar 

  59. Choi, G., Chung, H.: Elaborating the technology acceptance model with social pressure and social benefits for social networking sites (SNSs). Proceedings of the American Society for Information Science and Technology. 49(1), 1–3 (2012). https://doi.org/10.1002/meet.14504901376

    Article  MathSciNet  Google Scholar 

  60. Lu, C., Huang, S., & Lo, P. (2010). An empirical study of on-line tax filing acceptance model: Integrating TAM and TPB. African Journal of Business Management, 4(5), 800-810. Retrieved from http://www.academic journals.org/AJBM

  61. Lu, J., Yu, C., Liu, C., Yao, J.E.: Technology acceptance model for wireless internet. Internet Research. 13(3), 206–222 (2003). https://doi.org/10.1108/10662240310478222

    Article  Google Scholar 

  62. Lai, V.S., Honglei, L.: Technology acceptance model for internet banking: An invariance analysis. Information & Management. 42(2), 373–386 (2005). https://doi.org/10.1016/j.im.2004.01.007

    Article  Google Scholar 

  63. Mason, W., Suri, S.: Conducting behavioral research on amazon's mechanical turk. Behavior Research Methods. 44(1), 1 (2012)

    Article  Google Scholar 

  64. Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon's mechanical turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science. 6(1), 3–5 (2011). https://doi.org/10.1177/1745691610393980

    Article  Google Scholar 

  65. Westland, J.C.: Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications. 9(6), 476–487 (2010)

    Article  Google Scholar 

  66. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Prentice-Hall.

  67. Field, A.: Discovering statistics using IBM SPSS statistics, 4th edn. Sage Publishing, Thousand Oaks (2013)

    Google Scholar 

  68. U.S. Census Bureau. (2016). Quick facts United States. Retrieved from https://www.census.gov/quickfacts/fact/table/US/PST045216

  69. Federal Aviation Administration (2017a). FAA aerospace forecast fiscal years 2017-2037. U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2017-37_FAA_Aerospace_Forecast.pdf

  70. Federal Aviation Administration. (2017d). U.S. civil airmen statistics. U.S. Department of Transportation, Washington, D.C. Retrieved from https://www.faa.gov/data_research/aviation_data_statistics/civil_airmen_statistics

  71. Amos for Windows (Version 24) [Computer Software]. Armonk, NY: IBM Corp.

  72. Byrne, B.M.: Structural equation modeling with AMOS. Taylor and Francis Group, New York (2010)

    Google Scholar 

  73. Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science. 43(1), 115–135 (2015). https://doi.org/10.1007/s11747-014-0403-8

    Article  Google Scholar 

  74. Hair, J. F., Hult, T. M., Ringle, C. M., & Sarstedt, M (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.) Los Angeles, CA: Sage.

  75. Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika. 16(3), 297–334 (1951). https://doi.org/10.1007/BF02310555

    Article  MATH  Google Scholar 

  76. Donald, I.J., Cooper, S.R., Conchie, S.M.: An extended theory of planned behaviour model of the psychological factors affecting commuters' transport mode use. Journal of Environmental Psychology. 40, 39–48 (2014). https://doi.org/10.1016/j.jenvp.2014.03.003

    Article  Google Scholar 

  77. Yucel, U.A., Gulbahar, Y.: Technology acceptance model: A review of the prior predictors. Egitim Bilimleri Fakultesi Dergisi. 46(1), 89 (2013). https://doi.org/10.1501/Egifak_0000001275

    Article  Google Scholar 

  78. Cheng, T.C.E., Lam, D.Y.C., Yeung, A.C.L.: Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems. 42(3), 1558–1572 (2006). https://doi.org/10.1016/j.dss.2006.01.002

    Article  Google Scholar 

  79. Hsieh, P. (2015). Physicians' acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. International Journal of Medical Informatics, 84(1), 1-14. doi:10.106/ j.ijmedinf.2014.08.008

  80. Buaphiban, T., Truong, D.: Evaluation of passengers' buying behaviors toward low cost carriers in southeast Asia. Journal of Air Transport Management. 59, 124–133 (2017). https://doi.org/10.1016/j.jairtraman.2016.12.003

    Article  Google Scholar 

  81. Fortmann-Roe, S. (2012). Understanding the bias-variance tradeoff. Retrieved from http://scott.fortmann-roe.com/docs/BiasVariance.

  82. Mallya, J., & Lakshminarayanan, S. (2017). Factors influencing usage of internet for academic purposes using technology acceptance model. DESIDOC Journal of Library & Information Technology, 37(2), 119-124. Introduction to unmanned aircraft systems. Boca Raton, FL: CRC Press Taylor & Francis Group.

  83. Parker, D., Manstead, A.R., Stradling, S.G., Reason, J.T., Baxter, J.S.: Intention to Commit Driving Violations: An Application of the Theory of Planned Behavior. Journal of Applied Psychology. 77(1), 94–101 (1992). https://doi.org/10.1037/0021-9010.77.1.94

    Article  Google Scholar 

  84. Lao, H.C.F., Tao, V.Y.K., Wu, A.M.S.: Theory of planned behaviour and healthy sleep of college students: TPB and healthy sleep. Australian Journal of Psychology. 68(1), 20–28 (2016). https://doi.org/10.1111/ajpy.12094

    Article  Google Scholar 

  85. Ha, S., Stoel, L.: Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research. 62(5), 565–571 (2009). https://doi.org/10.1016/j.jbusres.2008.06.016

    Article  Google Scholar 

  86. Chan, K., Prendergast, G., Ng, Y.: Using an expanded theory of planned behavior to predict adolescents’ intention to engage in healthy eating. Journal of International Consumer Marketing. 28(1), 16–27 (2016). https://doi.org/10.1080/089611530.2015.1089088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Myers III.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, P.L., Truong, D. A New Research Model for Higher Risk ACTIVITES Applied to the Use of Small Unmanned Aircraft for Data Gathering Operations. J Intell Robot Syst 100, 1617–1634 (2020). https://doi.org/10.1007/s10846-020-01232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01232-x

Keywords

Navigation