Skip to main content
Log in

A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots

Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Reliably navigating to a distant goal remains a major challenge in robotics. In contrast, animals such as rats and pigeons can perform goal-directed navigation with great reliability. Evidence from neural science and ethology suggests that various species represent the spatial space as a topological template, with which they can actively evaluate future navigation uncertainty and plan reliable/safe paths to distant goals. While topological navigation models have been deployed in mobile robots, relatively little inspiration has drawn upon biology in terms of topological mapping and active path planning. In this paper, we propose a novel bio-inspired topological navigation model, which consists of topological map construction, active path planning and path execution, for aerial mobile robots with visual landmark recognition and compass orientation capability. To mimic the topological spatial representation, the model firstly builds the topological nodes based on the reliability of visual landmarks, and constructs the edges based on the compass accuracy. Then a reward diffusion algorithm akin to animals’ path evaluation process is developed. The diffusion process takes the topological structure and landmark reliability into consideration, which helps the agent to construct the path with visually reliable nodes. In the path execution process, the agent combines orientation guidance and landmark recognition to estimate its position. To evaluate the performance of the proposed navigation model, a systematic series of experiments were conducted in a range of challenging and varied real-world visual environments. The results show that the proposed model generates animal-like navigation behaviours, which avoids travelling across large visually aliased areas, such as forest and water regions, and achieves higher localization accuracy than navigating on the shortest paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Patrick, B., Suzanna, B., Neil, B.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114(2), 340–375 (2007)

    Google Scholar 

  2. Ólafsdóttir, H.F., Barry, C., Saleem, A.B., Hassabis, D., Spiers, H.J.: Hippocampal place cells construct reward related sequences through unexplored space. Elife. 4, e06063 (2015)

    Google Scholar 

  3. Schacter, D.L., Addis, D.R., Hassabis, D., Martin, V.C., Spreng, R.N., Szpunar, K.K.: The future of memory: remembering, imagining, and the brain. Neuron. 76(4), 677–694 (2012)

    Google Scholar 

  4. Javadi, A.H., et al.: Hippocampal and prefrontal processing of network topology to simulate the future. Nat. Commun. 8, 14652 (2017)

    Google Scholar 

  5. Dabaghian, Y., Brandt, V.L., Frank, L.M.: Reconceiving the hippocampal map as a topological template. Elife. 3(250), e03476 (2014)

    Google Scholar 

  6. Xiaojing, W., Foster, D.J.: Hippocampal replay captures the unique topological structure of a novel environment. J. Neurosci. 34(19), 6459–6469 (2014)

    Google Scholar 

  7. Mann, R., Freeman, R., Osborne, M., Garnett, R., Armstrong, C., Meade, J., Biro, D., Guilford, T., Roberts, S.: Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using Gaussian processes. J. R. Soc. Interface. 8(55), 210–219 (2011)

    Google Scholar 

  8. Guilford, T., Biro, D.: Route following and the pigeon's familiar area map. J. Exp. Biol. 217(2), 169–179 (2014)

    Google Scholar 

  9. Narendra, A.: Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J. Exp. Biol. 210(10), 1804–1812 (2007)

    Google Scholar 

  10. Zeil, J.: Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012)

    Google Scholar 

  11. Ravassard, P., Kees, A., Willers, B., Ho, D., Aharoni, D.A., Cushman, J., Aghajan, Z.M., Mehta, M.R.: Multisensory control of hippocampal spatiotemporal selectivity. Science. 340(6138), 1342–1346 (2013)

    Google Scholar 

  12. Fenton, A.A., Kao, H.Y., Neymotin, S.A., Olypher, A., Vayntrub, Y., Lytton, W.W., Ludvig, N.: Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J. Neurosci. 28(44), 11250–11262 (2008)

    Google Scholar 

  13. Jeffery, K.J., O’Keefe, J.M.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127(2), 151–161 (1999)

    Google Scholar 

  14. Spiers, H.J., Gilbert, S.J.: Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front. Hum. Neurosci. 9, 125 (2015)

    Google Scholar 

  15. Shallice, T., Burgess, P.W.: Deficits in strategy application following frontal lobe damage in man. Brain. 114 (Pt 2)(2), 727–741 (1991)

    Google Scholar 

  16. Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011)

    Google Scholar 

  17. Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired SLAM system. In. J. Robot. Res. 29(9), 1131–1153 (2010)

    Google Scholar 

  18. Garcia-Fidalgo, E., Ortiz, A.: Vision-based topological mapping and localization methods: A survey. Robot. Auton. Syst. 64, 1–20 (2015)

    Google Scholar 

  19. F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart, "Topomap: Topological mapping and navigation based on visual slam maps," in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 1–9: IEEE

  20. Marinakis, D., Dudek, G.: Pure topological mapping in mobile robotics. IEEE Trans. Robot. 26(6), 1051–1064 (2010)

    Google Scholar 

  21. M. Augustine, F. Ortmeier, E. Mair, D. Burschka, A. Stelzer, and M. Suppa, "Landmark-tree map: a biologically inspired topological map for long-distance robot navigation," in Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on, 2012, pp. 128–135: IEEE

  22. Brubaker, M.A., Geiger, A., Urtasun, R.: Map-based probabilistic visual self-localization. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 652–665 (2016)

    Google Scholar 

  23. Mao, J., Hu, X., Milford, M.: An adaptive localization system for image storage and localization latency requirements. Robot. Auton. Syst. 107, 246–261 (2018)

    Google Scholar 

  24. I. Kostavelis and A. Gasteratos, Semantic Mapping for Mobile Robotics Tasks. 2015

  25. Lowry, S., Sunderhauf, N., Newman, P., Leonard, J.J.: Visual place recognition: a survey. IEEE Trans. Robot. 1–19 (2015)

  26. Milford, M., Schulz, R.: Principles of goal-directed spatial robot navigation in biomimetic models. Philos. Trans. R. Soc. B. 369(1655), 20130484 (2014)

    Google Scholar 

  27. O'Keefe, J.: Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51(1), 78–109 (1976)

    Google Scholar 

  28. O'keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 15(7), 853–866 (2005)

    Google Scholar 

  29. Nakazawa, K., McHugh, T.J., Wilson, M.A., Tonegawa, S.: NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5(5), 361 (2004)

    Google Scholar 

  30. Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput. Biol. 3(8), e166 (2007)

    MathSciNet  Google Scholar 

  31. Howard, L.R., Javadi, A.H., Yu, Y., Mill, R.D., Morrison, L.C., Knight, R., Loftus, M.M., Staskute, L., Spiers, H.J.: The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr. Biol. 24(12), 1331–1340 (2014)

    Google Scholar 

  32. Fenton, A.A., et al.: Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J. Neurosci. Off. J. Soc. Neurosci. 28(44), 11250 (2008)

    Google Scholar 

  33. Spiers, H.J., Hayman, R.M.A., Aleksandar, J., Elizabeth, M., Jeffery, K.J.: Place field repetition and purely local remapping in a multicompartment environment. Cereb. Cortex. 25(1), 10–25 (2015)

    Google Scholar 

  34. Dabaghian, Y., MéMoli, F., Frank, L., Carlsson, G.: A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput. Biol. 8(8), e1002581 (2012)

    Google Scholar 

  35. Pfeiffer, B.E., Foster, D.J.: Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 497(7447), 74–79 (2013)

    Google Scholar 

  36. Grieves, R.M., Jeffery, K.J.: The representation of space in the brain. Behav. Process. 135, 113–131 (2017)

    Google Scholar 

  37. Gagliardo, A., Ioale, P., Savini, M., Dell’Omo, G., Bingman, V.P.: Hippocampal-dependent familiar area map supports corrective re-orientation following navigational error during pigeon homing: a GPS-tracking study. Eur. J. Neurosci. 29(12), 2389–2400 (2009)

    Google Scholar 

  38. Lehrer, M., Bianco, G.: The turn-back-and-look behaviour: bee versus robot. Biol. Cybern. 83(3), 211–229 (2000)

    Google Scholar 

  39. Narendra, A.: Homing strategies of the Australian desert ant Melophorus bagoti I. proportional path-integration takes the ant half-way home. J. Exp. Biol. 210(10), 1798–1803 (2007)

    Google Scholar 

  40. M. J. Milford and G. F. Wyeth, "SeqSLAM: Visual Route-Based Navigation for Sunny Summer Days and Stormy Winter Nights," in 2012 IEEE International Conference on Robotics and Automation, 2012, Pp. 1643-1649

  41. T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, "Robust Visual Robot Localization across Seasons Using Network Flows," in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014

  42. R. Vazquez-Martin, P. Nunez, A. Bandera, and F. Sandoval, "Spectral Clustering for Feature-Based Metric Maps Partitioning in a Hybrid Mapping Framework," in IEEE International Conference on Robotics & Automation, 2009

  43. X. Wang et al., "Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 6629–6638

  44. C. Giovannangeli, P. Gaussier, and G. Désilles, "Robust mapless outdoor vision-based navigation," in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp. 3293–3300: IEEE

  45. Trullier, O., Meyer, J.-A.: Animat navigation using a cognitive graph. Biol. Cybernet. J. Art. 83(3), 271–285 (2000)

    MATH  Google Scholar 

  46. Touretzky, D.S., Redish, A.D.: Theory of rodent navigation based on interacting representations of space. Hippocampus. 6(3), 247–270 (1996)

    Google Scholar 

  47. Hasselmo, M.E.: A model of prefrontal cortical mechanisms for goal-directed behavior. J. Cogn. Neurosci. 17(7), 1115–1129 (2005)

    Google Scholar 

  48. Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bio-inspired model of switching between navigation strategies. Biol. Cybernet. J. Art. 103(4), 299–317 (2010)

    MATH  Google Scholar 

  49. Duff, A., Fibla, M.S., Verschure, P.F.: A biologically based model for the integration of sensory–motor contingencies in rules and plans: a prefrontal cortex based extension of the distributed adaptive control architecture. Brain Res. Bull. 85(5), 289–304 (2011)

    Google Scholar 

  50. A. Arleo, "Spatial Learning and Navigation in Neuromimetic Systems," Modeling the Rat Hippocampus, 2000

  51. Biro, D., Meade, J., Guilford, T.: Familiar route loyalty implies visual pilotage in the homing pigeon. Proc. Natl. Acad. Sci. U. S. A. 101(50), 17440–17443 (2004)

    Google Scholar 

  52. J. Knopp, J. Sivic, and T. Pajdla, "Avoiding confusing features in place recognition," Computer Vision–ECCV 2010, pp. 748–761, 2010

  53. H. Jin Kim, E. Dunn, and J.-M. Frahm, "Predicting good features for image geo-localization using per-bundle vlad," in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1170–1178

  54. H. J. Kim, E. Dunn, and J.-M. Frahm, "Learned Contextual Feature Reweighting for Image Geo-Localization," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

  55. Mao, J., Hu, X., He, X., Zhang, L., Wu, L., Milford, M.J.: Learning to fuse multiscale features for visual place recognition. IEEE Acc. 7, 5723–5735 (2019)

    Google Scholar 

  56. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23–36 (2006)

    Google Scholar 

  57. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1437–1451 (2018)

    Google Scholar 

  58. P. Beeson, M. MacMahon, J. Modayil, J. Provost, F. Savelli, and B. Kuipers, "Exploiting local perceptual models for topological map-building," in IJCAI-2003 Workshop on Reasoning with Uncertainty in Robotics (RUR-03), 2003, pp. 15–22

  59. Erdem, U.M., Hasselmo, M.: A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur. J. Neurosci. 35(6), 916–931 (2012)

    Google Scholar 

  60. Kohler, M., Wehner, R.: Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol. Learn. Mem. 83(1), 1–12 (2005)

    Google Scholar 

  61. H. G. Wallraff, Avian Navigation: Pigeon Homing as a Paradigm. Springer Science & Business Media, 2005

  62. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30(1–2), 39–64 (2000)

    Google Scholar 

  63. Xian, Z., He, X., Lian, J., Hu, X., Zhang, L.: A bionic autonomous navigation system by using polarization navigation sensor and stereo camera. Autonom. Robots J. Art. 41(5), 1107–1118 (2017)

    Google Scholar 

  64. Z. Mathews et al., "Insect-like mapless navigation based on head direction cells and contextual learning using chemo-visual sensors," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Int. Conf., 2009, 2243–2250: IEEE

  65. Fan, C., Hu, X., He, X., Zhang, L., Lian, J.: Integrated polarized skylight sensor and MIMU with a metric map for urban ground navigation. IEEE Sensors J. 18(4), 1714–1722 (2018)

    Google Scholar 

  66. https://www.nearmap.com.au/

  67. Kim, A., Eustice, R.M.: Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Trans. Robot. 29(3), 719–733 (2013)

    Google Scholar 

  68. Mehlhorn, J., Rehkämper, G.: Neurobiology of the homing pigeon—a review. Naturwissenschaften. 96(9), 1011–1025 (2009)

    Google Scholar 

  69. Jacobson, A., Chen, Z., Milford, M.: Autonomous multisensor calibration and closed-loop fusion for SLAM. J. Field Robot. 32(1), 85–122 (2015)

    Google Scholar 

  70. Ito, H.T., Zhang, S.-J., Witter, M.P., Moser, E.I., Moser, M.-B.: A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation. Nature. 522(7554), 50 (2015)

    Google Scholar 

  71. Banino, A., et al.: Vector-based navigation using grid-like representations in artificial agents. Nature. 557(7705), 429 (2018)

    Google Scholar 

  72. Song, Y., Nuske, S., Scherer, S.: A multi-sensor fusion MAV state estimation from long-range stereo, IMU, GPS and barometric sensors. Sensors. 17(1), 11 (2017)

    Google Scholar 

  73. Tong, Q., Li, P., Shen, S.: VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. PP(99), 1–17 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Nature Science Foundation of China under Grant 61573371, 61503403, 61773394. MM was partially supported by an ARC Future Fellowship FT140101229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Hu, X., Zhang, L. et al. A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. J Intell Robot Syst 100, 289–310 (2020). https://doi.org/10.1007/s10846-020-01190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01190-4

Keywords

Navigation