SMOOTH Robot: Design for a Novel Modular Welfare Robot


Demographic change is expected to challenge many societies in the next few decades if todays’ standards of services in e.g. elder care shall be maintained. Robots are considered to at least partially mitigate this challenge, however, robots are rarely applied in the welfare domain. This paper describes the development of a concept for a novel welfare robot that is modular and affordable. The development is based on a participatory design process and by taking strengths and limitations of selected, commercially available robots into account. This work contributes a design methodology specific for welfare robots and a resulting robot concept that address three use cases in a care center. The concept includes multi-modal robot perception that facilitates a proactive robot behavior for achieving smooth interactions with end-users.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aethon: Tug., (accessed on 13/8/2018) (2014)

  2. 2.

    AR track Alvar: Ar track alvar., (accessed on 2019-07-06) (2013)

  3. 3.

    Bent Hansen, C.H.: Pres på sundhedsvæsenet derfor stiger sygehusudgifterne – sådan holder vi væksten nede (2015)

  4. 4.

    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. 5.

    Blue Ocean Robotics: Uv disinfection robot., (accessed on 13/8/2018) (2016)

  6. 6.

    Brandt, E, Binder, T, Sanders, E: Tools and Techniques: Ways to Engage Telling, Making and Enacting. Routledge International Handbooks (2012)

  7. 7.

    Cao, Z, Simon, T, Wei, S, Sheikh, Y: Realtime multi-person 2d pose estimation using part affinity fields. arXiv:1611.08050 (2016)

  8. 8.

    Castro-González, A, Admoni, H., Scassellati, B.: Effects of form and motion on judgments of social robots’ animacy, likability, trustworthiness and unpleasantness. Int. J. Human-Comput. Stud. 90, 27–38 (2016).

    Article  Google Scholar 

  9. 9.

    Cherubini, A., Passama, R., Fraisse, P., Crosnier, A.: A unified multimodal control framework for human–robot interaction. Robot. Auton. Syst. 70, 106–115 (2015).

    Article  Google Scholar 

  10. 10.

    Cohen, B.J., Chitta, S., Likhachev, M.: Search-based planning for manipulation with motion primitives. In: IEEE International Conference on Robotics and Automation. IEEE, Anchorage (2010)

  11. 11.

    Coradeschi, S, Cesta, A, Cortellessa, G, Coraci, L, Galindo, C, Gonzalez, J, Karlsson, L, Forsberg, A, Frennert, S, Furfari, F, Loutfi, A, Orlandini, A, Palumbo, F, Pecora, F, von Rump, S, Štimec, A, Ullberg, J, Ötslund, B: GiraffPlus: A System for Monitoring Activities and Physiological Parameters and Promoting Social Interaction for Elderly, pp 261–271. Springer International Publishing, Cham (2014)

    Google Scholar 

  12. 12.

    Dereshev, D., Kirk, D.: Form, function and etiquette–potential users’ perspectives on social domestic robots. Multimodal Technol. Interact. 1, 2 (2017).

    Article  Google Scholar 

  13. 13.

    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fischinger, D, Einramhof, P, Papoutsakis, K, Wohlkinger, W, Mayer, P, Panek, P, Hofmann, S, Koertner, T, Weiss, A, Argyros, A, Vincze, M: Hobbit, a care robot supporting independent living at home: First prototype and lessons learned. Robot. Auton. Syst. 75, 60–78 (2016)., assistance and Service Robotics in a Human Environment

    Article  Google Scholar 

  15. 15.

    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: Efficient position estimation for mobile robots. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando (1999)

  16. 16.

    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  17. 17.

    Haarslev, F., Docherty, D., Suvei, S.D., Juel, W.K., Bodenhagen, L., Shaikh, D., Krüger, N, Manoonpong, P.: Towards crossmodal learning for smooth multimodal attention orientation. In: Social Robotics, pp 318–328. Springer International Publishing, Cham (2018)

  18. 18.

    Hashimoto, K., Saito, F., Yamamoto, T., Ikeda, K: A field study of the human support robot in the home environment (2013)

  19. 19.

    He, K, Gkioxari, G, Dollár, P, Girshick, RB: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

  20. 20.

    He, W, Goodkind, D, Kowal, P: An aging world: 2015 international population reports. US Census Bureau (2016)

  21. 21.

    Hess, W., Kohler, D., Rapp, H., Andor, D: Real-time loop closure in 2d lidar slam. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 138–143. IEEE, Stockholm (2016)

  22. 22.

    Howard, A.G., Zhu, M, Chen, B, Kalenichenko, D, Wang, W, Weyand, T, Andreetto, M, Adam, H: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  23. 23.

    Juel, W, Krüger, N, Bodenhagen, L: Robots for elderly care institutions: How they may affect elderly care. Frontiers in Artificial Intelligence and Applications (2018)

  24. 24.

    Kittmann, R., Frölich, T, Schäfer, J, Reiser, U, Weisshardt, F, Haug, A: Let me introduce myself: I am care-o-bot 4, a gentleman robot. Mensch und Computer 2015 Tagungsband (2015)

  25. 25.

    Lemaignan, S, Warnier, M, Sisbot, E, Alami, R: Human-robot interaction: Tackling the ai challenges. Artificial Intelligence – Special Issue on Robotics (2015)

  26. 26.

    Lin, T, Maire, M, Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J, Perona, P, Ramanan, D, Dollár, P, Zitnick, CL: Microsoft COCO: Common objects in context. arXiv:1405.0312(2014)

  27. 27.

    Lu, D.V., Hershberger, D, Smart, W.D.: Layered costmaps for context-sensitive navigation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 709–715 (2014)

  28. 28.

    Mobile Industrial Robots: Mir100., (accessed on 13/8/2018) (2013)

  29. 29.

    Mobile Mask R-CNN: Mobile mask r-cnn., (accessed on 2019-07-06) (2018)

  30. 30.

    Mutlu, B, Forlizzi, J: Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction. In: HRI 2008 - Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction: Living with Robots, pp. 287–294 (2008)

  31. 31.

    PAL Robotics: TIAGo., (accessed on 13/8/2018) (2015)

  32. 32.

    Pink, S: Doing Visual Ethnography. Sage (2001)

  33. 33.

    Porr, B, Wörgötter, F: Strongly improved stability and faster convergence of temporal sequence learning by utilising input correlations only. Neur Comput 18(6), 1380–1412 (2006)

    Article  Google Scholar 

  34. 34.

    Preece, Y.J., Rogers, S.H.: Interaction Design: Beyond Human-Computer Interaction. Wiley (2015)

  35. 35.

    Rehrl, T., Geiger, J., Golcar, M., Gentsch, S., Knobloch, J., Rigoll, G., Scheibl, K., Schneider, W., Ihsen, S., Wallhoff, F.: The robot alias as a database for health monitoring for elderly people. In: Wichert, R, Klausing, H (eds.) Ambient Assisted Living, pp 225–245. Springer, Berlin (2014)

  36. 36.

    Riek, L.D.: Healthcare robotics. Commun. ACM 60(11), 68–78 (2017).

    Article  Google Scholar 

  37. 37.

    ROS Navigation Stack: Ros navigation stack., (accessed on 2019-27-05) (2013)

  38. 38.

    Rösmann, C, Feiten, W., Wösch, T, Hoffmann, F., Bertram, T: Efficient trajectory optimization using a sparse model. In: Proc. IEEE European Conference on Mobile Robots, pp 138–143. IEEE, Barcelona (2013)

  39. 39.

    Barn, R.: Rubens barn., (accessed on 13/8/2018) (2018)

  40. 40.

    Schroff, F, Kalenichenko, D, Philbin, J: Facenet: A unified embedding for face recognition and clustering. arXiv:1503.03832 (2015)

  41. 41.

    Shaikh, D, Bodenhagen, L, Manoonpong, P: Concurrent intramodal learning enhances multisensory responses of symmetric crossmodal learning in robotic audio-visual tracking. Cognitive Systems Research 54, 138–153 (2019).

    Article  Google Scholar 

  42. 42.

    SMOOTH: Seamless human-robot interaction for the support of elderly people., (accessed on 13/8/2018) (2017)

  43. 43.

    Softbank Robotics: Nao, romeo and pepper., (accessed on 13/8/2018) (2014)

  44. 44.

    Spinuzzi, C.: The methodology of participatory design. Tech. Commun. 52(2), 163–174 (2005)

    Google Scholar 

  45. 45.

    Ventura, J., Bichard, J.A.: Design anthropology or anthropological design? towards ’social design’. Int. J. Des. Creativ. Innov. 5(3–4), 222–234 (2017).

    Article  Google Scholar 

Download references


The authors would like to thank the staff and residents at Ølby elderly care center for the fruitful discussions and valuable insights that have been shared. We would also like to thank Mobile Industrial Robots, Fraunhofer Institute, Softbanks Robotics and PAL Robotics for letting us use images of their robots.

Author information



Corresponding author

Correspondence to William K. Juel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was part of the SMOOTH project (project number 6158-00009B) by Innovation Fund Denmark.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Juel, W.K., Haarslev, F., Ramírez, E.R. et al. SMOOTH Robot: Design for a Novel Modular Welfare Robot. J Intell Robot Syst 98, 19–37 (2020).

Download citation


  • Robotics
  • Welfare
  • Healthcare
  • Design
  • HRI